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a b s t r a c t

Damage detection in structures is one of the research topics that have received growing interest in
research communities. While a number of damage detection and localization methods have been pro-
posed, very few attempts have been made to explore the structure damage classification problem. This
paper presents an Artificial Immune Pattern Recognition (AIPR) approach for the damage classification
in structures. An AIPR-based structure damage classifier has been developed, which incorporates several
novel characteristics of the natural immune system. The structure damage pattern recognition is
achieved through mimicking immune recognition mechanisms that possess features such as adaptation,
evolution, and immune learning. The damage patterns are represented by feature vectors that are
extracted from the structure’s dynamic response measurements. The training process is designed based
on the clonal selection principle in the immune system. The selective and adaptive features of the clonal
selection algorithm allow the classifier to evolve its pattern recognition antibodies towards the goal of
matching the training data. In addition, the immune learning algorithm can learn and remember different
data patterns by generating a set of memory cells that contains representative feature vectors for each
class (pattern). The performance of the presented structure damage classifier has been validated using
a benchmark structure proposed by the IASC–ASCE (International Association for Structural Control–
American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group and a three-story
frame provided by Los Alamos National Laboratory. The validation results show that the AIPR-based pat-
tern recognition is suitable for structure damage classification. The presented research establishes a fun-
damental basis for the application of the AIPR concepts in the structure damage classification.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The civil structures, such as bridges and buildings, play an
important role in people’s daily life. Maintaining safe and reliable
civil structures is important to the well being of all of us [1]. The
sudden failure and collapse of the I-35W Interstate system bridge
in Minneapolis has raised policy concerns in US Congress regarding
the condition of the nation’s transportation infrastructure [2].
Based on the CRS (Congressional Research Service) Report for Con-
gress [2], in 2006, about 26% of bridges were classified as either
structurally deficient, functionally obsolete, or both. About 12% of
bridges in that year, approximately 74,000, were classified as
structurally deficient. To ensure civil structures meeting life-safety
standards over their operational lives, early identification and
assessment of structural damage are necessary [3].
ll rights reserved.
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Structural Health Monitoring (SHM) holds promise for monitor-
ing structure performance with an excellent cost/benefit ratio. The
SHM process involves the observation of a structure’s dynamic re-
sponse measurements from a group of sensors, the extraction of
damage-sensitive features from these measurements, and analysis
of these features to determine the current state of the structure [4].
Damage identification is one of the research topics that have been
extensively investigated. The vibration-based damage assessment
of the bridge structures and buildings has been studied since the
early 1980s. Doebling et al. [5] summarized the researches on
the vibration-based damage identification and health monitoring.
Sohn et al. [6] reviewed the technical papers in structural health
monitoring, published between 1996 and 2001. Most conventional
structural health monitoring methods are modal analysis based.
Modal parameters, such as natural frequencies, damping ratios,
and mode shape curvature, have been the primary features used
to identify damage in structures. Recently, a number of new ap-
proaches, such as statistical pattern recognition [7,8] and neural
network [9–11], have been proposed for the damage diagnosis.
For example, Sohn and Farrar [7] proposed a statistical pattern
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recognition method for the damage diagnosis using time series
analysis of vibration signals. The residual error ratio of ARX models
for test signal and the reference signal is defined as the damage-
sensitive feature. Lee et al. [9] presented a method for damage
detection in a plate structure and damage localization using neural
network technique.

While a lot of efforts have been made in detecting damages in
structures, few researches have been conducted for the structure
damage classification. The damage classification is not only in
detecting damage but also to categorize detected damage pattern
to one of a number of possible damage categories. Note that the
term ‘‘pattern” in the paper has the same meaning as ‘‘class” or
‘‘category.” This paper presents an Artificial Immune Pattern Rec-
ognition (AIPR) method for structure damage detection and classi-
fication. An AIPR-based Structure Damage Classifier (AIPR-SDC) has
been developed for the supervised structure damage classification.
This classification method can be applied to any problem where
time series are involved. The AIPR-SDC presents a number of
advantages. First, it is adaptive. The type of antibodies and memory
cells can adapt to the antigenic stimulation through clonal selec-
tion algorithm. Second, it has learning capability. Different patterns
are recorded in the memory via memory cells. Third, the advanced
selection mechanism allows the classifier to keep best memory
cells in the memory cell set. The AIPR-SDC algorithm is based on
the CLONALG algorithm in [12] and the AIRS in [13]. The contribu-
tions of the paper include (1) design memory cell update strategies
to obtain good representatives for each damage pattern, (2) the
modification of general AIPR algorithm in order to be able to cope
with time series data, (3) providing an immune inspired solution to
the structure damage classification problem. The AIPR-based struc-
ture damage classifier has been used to classify structure damage
patterns using a benchmark structure proposed by the IASC–ASCE
(International Association for Structural Control–American Society
of Civil Engineers) SHM Task Group [14] and a three-story frame
provided by Los Alamos National Laboratory (LANL) [15].

The rest of the paper is organized as follows: Section 2 intro-
duces basic concepts of natural and artificial immune systems. Sec-
tion 3 presents the algorithm design of the AIPR-based structure
damage classifier. Section 4 shows the classifier validation results
and discusses the impact of system parameters on the performance
of the AIPR-SDC. Section 5 concludes the presented work.
Table 1
Mapping between the natural immune system and the AIPR-SDC.

Natural immune system AIPR-SDC

Antibody Feature vector with class information
Antigens Training and classification data
B-cells Artificial B-cells
Immune memory Memory cells
Primary response Antigenic stimulation to the antibody set
2. Natural and artificial immune systems

The natural immune system is a rapid and effective defense
mechanism for a given host against infections [16]. From a pattern
recognition perspective, the most appealing characteristic of the
immune system is its immune cells (B-cells and T-cells) carrying
surface receptors that are capable of recognizing and binding anti-
gens. When a B-cell encounters a nonself antigen that has suffi-
cient affinity with its receptor (antibody), the B-cell is activated.
It, therefore, undergoes a clonal selection process that generates
B-cells with similar receptors as the activated B-cell. The B-cells
with high antigenic affinities are selected to become memory cells
that remain in the immune system for months or years. The first
exposure of a B-cell to a specific type of antigen triggers the pri-
mary response in which the pattern is recognized and the memory
is developed [17]. The secondary response occurs when the same
antigen is encountered again. The memory cell for a specific anti-
gen that had stimulated in the primary response will respond to
previously recognized antigen in a much shorter time compare to
a newly activated B-cell [18].

The Artificial Immune Systems (AIS) can be defined as the ab-
stract or metaphorical computational systems developed using
ideas, theories, and components, extracted from the immune
system [19]. The AIS seems best suited to handle the great complex-
ity of the reality [17]. The reason behind this is that the natural im-
mune system incorporates a variety of artificial intelligence
techniques, such as pattern recognition through a network of col-
laborating agents (e.g., immune network of B-cells), adaptive learn-
ing through memory (e.g., memory B-cells), and an advanced
selection mechanism of the best B-cells [20]. The AIS has found var-
ious applications in the fields of pattern recognition, fault diagnosis,
and intrusion detection. In the pattern recognition area, a number
of researchers have exploited immune concepts for supervised
and unsupervised classification [12,13], remote sensing image clas-
sification [21,22], and medical classification problems [23].

Pattern recognition is the scientific discipline whose goal is the
classification of objects into a number of categories or classes
[24]. The pattern recognition method classifies data (patterns)
based on either a priori knowledge or on the statistical information
extracted from the patterns. The patterns to be classified are usually
the groups of measurements, defining points in an appropriate mul-
ti-dimensional space. The measurements used for the classification
are known as features. If p features are used fi; i ¼ 1;2; . . . ; p, these
p features can form a feature vector F ¼ ðf1; f2; . . . fpÞT , where T de-
notes transposition. The generation of the feature vector is problem
dependant, and the feature selection is critical to the success of the
design of a classification system. The pattern recognition has two
types: supervised and unsupervised. For supervised pattern recog-
nition, training data for each class are available for the design of the
classifier, while in unsupervised pattern recognition, the class label
information of training data are not available. For the unsupervised
pattern recognition problem, the goal is to cluster ‘‘similar” feature
vectors by unraveling their underlying similarities [24].
3. AIPR-based structure damage detection and classification

3.1. An AIPR-based structure damage classifier

This section introduces structure damage classification based
on time series data from senor nodes. The classification system is
designed using concepts derived from the natural immune system.
The component correspondence between the natural immune sys-
tem and the AIPR-based structure damage classifier, AIPR-SDC, is
shown in Table 1. The AIPR-SDC algorithm consists of two major
stages as shown in Fig. 1. The first stage is the data pre-processing
and feature extraction. In this stage, all the training data (sensor
data) need to be standardized and the feature vectors need to be
generated. In addition, memory cell set and antibody set for all
the classes are initialized. In the second stage, the training antigen
stimulates the antibody set and thus causes some of antibodies to
produce clones. The cloned antibodies are mutated to increase the
affinity level of the antibody set with the invading antigen. The
antibody having highest affinity with the stimulating antigen is
chosen as a candidate memory cell for updating memory cell set.
3.1.1. Major components and parameters of the AIPR-SDC
This section defines the major components and parameters

used in the AIPR-SDC algorithm.
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Fig. 1. The major stages of the AIPR-SDC.
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1. Feature vector and feature space: a feature vector is a p-
dimensional vector consisting of p numerical features to rep-
resent an object. A feature space is an abstract space where
the data of each pattern is represented as a point in a p-
dimensional real vector space Rp. The dimension of a feature
space is determined by the number of features in the feature
vector that describes the patterns. For example, when a time
series is represented by an auto regressive (AR) model of
order p; the feature vector of the time series could be a p-
dimensional real vector consisting of p coefficients of the
AR model.

2. Antigen: an antigen is a substance that stimulates the gener-
ation of antibodies and updates memory cells in the same
class. In artificial immune pattern recognition systems, an
antigen could be a training or classification data that has
two attributes, a feature vector and the class to which the
antigen belongs.

3. Antibody and antibody set: an antibody has the same data
structure (representation) as an antigen. The antibody set
contains nc number of subsets. The number of nc is the num-
ber of patterns to be classified. The antibodies in ith subset
are able to recognize ith pattern.

4. Artificial B-cell: an artificial B-cell is analogous to a B-cell in
the natural immune system, which contains antibodies for
recognizing antigens.

5. Affinity: the degree of match between an antigen and an
antibody of a B-cell or a memory cell. The affinity value
depends on the distance between two feature vectors of
two objects (defined in Eq. (12)). Longer distance means
lower affinity, and shorter distance means higher affinity.
In our implementation, the value of the affinity is limited
between 0 and 1.
6. Memory cell and memory cell set: a memory cell is an anti-
body that has highest affinity with a previously invading
antigen. The memory cell set consists of several subsets.
The number of subsets is equal to the number of patterns.
The memory cells for one class are representatives of this
class and contained in one subset.

7. Matched memory cell ðMCmatchedÞ: the memory cell that has
the highest affinity with the training antigen in the same
class.

8. Candidate memory cell ðMCcandidtaedÞ: the antibody that has
highest affinity with the antigen after the antibody set is
stimulated by the antigen.

9. Clonal value (CV): a value that measures the response of an
artificial B-cell to an antigen. The clonal value combined
with the clonal rate defined below determines how many
clones are generated for the activated B-cell. This value is
equal to the affinity between an antibody and the stimulat-
ing antigen.

10. Mutation value (MV): a value used to indicate the mutation
degree of the feature vector of an antibody.

11. Clonal rate (CR): an integer value used to control the number
of antibody clones allowed for the activated B-cell. The num-
ber of clones is CR * CV.

12. Hyper-clonal rate (HCR): an integer value to control the
number of antibodies cloned from the matched memory cell.

13. Memory cell replacement threshold (MCRT): a threshold
value to determine the replacement of an existing memory
cell with the candidate memory cell.

14. Memory cell injection threshold (MCIT): a threshold value to
determine if the candidate memory cell is added into the
memory cell set.

15. MaxABN: the maximum number of the antibodies for each
class in the antibody set.

16. r: the standard deviation of a normal random variable
Nð0;rÞ.
3.1.2. Notational convention
Before introducing the AIPR-based damage classifier in detail,

following notational convention is giving for ease of understanding
the algorithm.

� Let ab denote the single antibody. Let ab.f and ab.c denote the
feature vector and the class (pattern) of the antibody ab, respec-
tively, where ab:f 2 Rp; ab:c 2 C ¼ 1;2; . . . ;ncf g, Rp is a p-dimen-
sional real value space and nc is the number of classes.

� Let ABS denote the Antibody Set that contains antibodies for all
the classes. Let ABSi denote the antibody subset of the ith class
such that ABSi ¼ abjab:c ¼ if g; 1 6 i 6 nc and

Snc
i¼1ABSi ¼ ABS.

� Let mc denote the single memory cell. Let mc.f and mc.c denote
the feature vector and the class information of the memory cell,
respectively, where mc:f 2 Rp; mc:c 2 C ¼ 1;2; . . . ;ncf g, Rp is a
p-dimensional real value space and nc is the number of classes.

� Let MCS denote the Memory Cell Set, consisting of memory cells
for all the classes. Let MCSi denote the memory cell subset of the
ith class such that MCSi ¼ mcjmc:c ¼ if g; 1 6 i 6 nc andSnc

i¼1MCSi ¼ MCS.
� Let ag denote an antigen. Let ag.f and ag.c denote the feature vec-

tor and the class of the antigen ag respectively, where
ag:f 2 Rp; ag:c 2 C ¼ 1;2; . . . ;ncf g, Rp is a p-dimensional real
value space and nc is the number of classes.
3.2. AIPR-based structure damage classifier algorithm

3.2.1. Data pre-processing, feature extraction, and initialization
This subsection introduces how to process measurement data,

calculate feature vectors, and initialize the memory cell set and
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the antibody set for the classifier training. The steps of this process
are shown in Fig. 2. The algorithm for each step is described in the
following subsections.

3.2.1.1. Data standardization. The measurement data are standard-
ized to reduce the environmental effects. Let matrix Z ¼ zij

� �
m�n

denote the time series of measurement data, where each row is
corresponding to the n number of data generated by one sensor
and each column is the measurement data collected by the m sen-
sors at a given time. Let z

*

i ¼ zi1; zi2; . . . ; zinð Þ; i ¼ 1;2; . . . ;n denote
the ith row of the matrix Z, which is the measurement data of ith
sensor. The standardized measurement data Y ¼ yij

� �
m�n

can be
calculated by Eq. (1):

yij ¼
zij � li

ri
; j ¼ 1;2; . . . ;n; ð1Þ

where yij is the standardized value of the corresponding zij; li and
ri are the mean and standard deviation of the time series z

*

i.

3.2.1.2. Dimensionality reduction using principle component analysis
(PCA) method. For monitoring a structure, multiple sensors are
usually used to collect data from different locations. To extract fea-
ture vectors for a local area, time series measurement data sets
from multiple sensors are reduced to lower dimensions by the
Principal Component Analysis (PCA) method. The PCA is a statisti-
cal technique that uses a substantially smaller set of uncorrelated
variables to represent the maximum amount of information from
the original set of variables [8]. The PCA method involves the cal-
culation of the eigenvalue decomposition of a data covariance ma-
trix or singular value decomposition of a data matrix, usually after
mean centering the data for each attribute.

Let W denote the m�m covariance matrix of the standardized
time signals Y. The matrix W can be obtained by

W ¼ 1
n� 1

YYT : ð2Þ

Let ki and v
*

i denote the ith eigenvalue and eigenvector of matrix W,
respectively and k1 P k2 P � � �P km. Then W; ki and v i satisfy:

Wv
*

i ¼ kiv
*

i i ¼ 1;2; . . . ;m; ð3Þ

where eigenvector v
*

i is called the ith principal component. In order
to reduce the m-dimensional measurement data set into a d-dimen-
sional data set, Y should be projected onto the eigenvectors corre-
sponding to the first d largest eigenvalues:

X ¼ v
*

1;v
*

2; . . . ;v
*

d

� �T
Y; ð4Þ
Feature extraction: AR

Compress data: PCA

Input: measurement 
data

Initialize memory 
cell set: kmeans

Initialize antibody set : 
random selection

Data standardization

Fig. 2. Data pre-processing, feature extraction, and initialization.
where X is the compressed time signals.
In our study, the time series from m number of sensors are com-

pressed into a single time series. It means that all the sensor mea-
surement data are projected onto the principal component that has
the biggest eigenvalue. Let v

*

1 denote the vector that is correspond-
ing to the biggest eigenvalue. So, the relationship between the
compressed data x

*
¼ x1; x2; . . . ; xnð Þ;v

*

1 and Y is shown in Eq. (5)

x
*
¼ v

*T
1Y : ð5Þ
3.2.1.3. Feature extraction using multiple regression analysis. Once
the measurement data Z are compressed into a one dimensional
data set, the next step is to extract the feature vector from the com-
pressed data for the classification. Since the compressed data x

*

consists of a large number of data points, it is not suitable to be
used as a feature vector directly. The auto regressive algorithm is
chosen to model the compressed time series data. Each com-
pressed time series x is fitted to an AR model of order p as shown
in Eq. (6)

xk ¼
Xp

i¼1

aixk�i þ rk k ¼ pþ 1; . . . ; n; ð6Þ

where ai; i ¼ 1;2; . . . ; p is the coefficient of the AR model;
rk; k ¼ pþ 1; . . . ; n is the residual between the measurement data
and the AR model value. The vector a ¼ a1;a2; . . . ;ap

� �T , a collection
of the AR coefficients, is selected as the feature vector of the mea-
surement data Z.

There are several ways to calculate the feature vector a, such as
Least Square (LS) and Yule Walker (YW). The LS method is used in
our implementation. Eq. (6) is rewritten as follows:

Aa ¼ b; ð7Þ

where

A ¼

xp xp�1 � � � x1

xpþ1 xp � � � x2

� � � � � � . .
.

� � �
xn�1 xn�2 � � � xn�p�1

2
66664

3
77775; b ¼

xpþ1

xpþ2

..

.

xn

2
66664

3
77775 ð8Þ

The feature vector a can be calculated as follows:

a ¼ AT A
� ��1

AT b: ð9Þ

To keep the affinity values within the range of (0,1), the norm
(length) of the feature vectors of all training and classification data
are normalized to the unit hyper-sphere. The normalization pro-
cess uses the maximum norm of the feature vectors. Let f denote
the feature vector of one measurement data and MaxNorm denote
the maximum norm of all the measurement data, the normalized
feature vector fnormalized of f ¼ f1; f2; . . . ; fp

� �T is as follows

fnormalized ¼
1

MaxNorm
f ; ð10Þ

where MaxNorm ¼maxf2all measurement data normðf Þð Þ and normðf Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1f 2

i

� �q
is the norm of the feature vector. Since all the feature

vectors are located within a unit hyper-sphere, the distance be-
tween any feature vectors is less than 2, and their affinity is within
the range of (0,1) based on the affinity definition given in the Sec-
tion 3.2.2.1. In the remaining part of the paper, all feature vectors
are referred to the normalized feature vectors.

3.2.1.4. Initialization of antibody set and memory cell set. The initial
antibodies for each class (pattern) are randomly selected from
the feature vectors of the training data in each class since the
bad antibodies will be easily replaced by cloned antibodies that
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have higher affinity with the antigen. For memory cells, however,
the replacement happens only to the candidate memory cells that
meet certain criteria as stated in the later Section 3.2.2.2. To obtain
good representatives for each class when the memory cells are ini-
tialized, the k-means algorithm is applied to the corresponding
training data in each class to generate initial memory cells. The
k-means algorithm is used one time for each class. The k-means
algorithm [24] clusters n number of multi-dimensional points into
k partitions, where k < n. The resulting k vectors ci; i ¼ 1;2; . . . ; k
are the centroids of k clusters with minimum intra-cluster
variance:

E ¼
Xk

i¼1

X
aj2Si

aj � ci
� �2

; ð11Þ

where Si is the ith cluster. These k vectors ci are chosen as the initial
memory cells for each class. Since the value k is selected as k ¼ 4,
the initial number of memory cells for each class is 4. The initial
number of antibodies for each class is chosen 10.

3.2.2. Classifier training process
The goal of the training process is to develop memory cells that

are good feature representations for each pattern. The classifier
training process consists of the antibody set refinement process
(evolution of antibody set) and the memory set refinement process
(update of memory cell set). The flow chart of the training process
is shown in Fig. 3.

3.2.2.1. Evolution of antibody population using antigenic stimula-
tion. The stimulation of antibody set by an invading antigen will
cause the evolution of the antibody set. The algorithm to evolve
the antibody set by an antigenic stimulation is shown in Fig. 5. Gi-
ven a training antigen ag, for each antibody ab that is in the same
class as the antigen ag, the affinity between an antibody and the
antigen is calculated. Let ab:f ¼ b ¼ b1; b2; . . . ; bp

� �T and ag:f ¼
c ¼ c1; c2; . . . ; cp

� �T
denote the feature vectors of an antibody ab

and an antigen ag, respectively. The affinity between an antibody
and the antigen is defined as

aff ðab; agÞ ¼ 1� 1
2

distðb; cÞ; ð12Þ

dis b; cð Þ ¼
Xp

i¼1

bi � cið Þ2
 !1

2

; ð13Þ
A training antigen 
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Find matched 
memory cell

Antibody set: 
ABS

Stimulate

Clone and mutate 
antibody set

Evolve antibody 
set

Find candidated 
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Meet 
cri

Yes

Update
ce
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Fig. 3. The training proc
where distðb; cÞ is the distance between the feature vectors of b and
c. The probability that an antibody ab is cloned depends on its affin-
ity with the antigen. It means that an antibody with higher affinity
has higher probability to be cloned. The number of the cloned anti-
bodies, CloneNumber, depends on the clonal rate CR and the clonal
value CV. According to the natural immune system, the higher the
affinity, the larger the number of antibodies is cloned. The clonal va-
lue CV is the reflection of this affinity. We choose the clonal value
being equal to the affinity value. Let CloneNumber denote the num-
ber of the cloned antibodies, the value of CloneNumber can be calcu-
lated by Eq. (14)

CloneNumber ¼ roundðCR � CVÞ ¼ round CR � aff ab; agð Þð Þ; ð14Þ

where roundð�Þ is an operator that rounds its value to the closest
integer.

The cloned antibodies undergo an affinity maturation process
that increases the diversity of the antibody set. Let abmutated denote
the mutated antibody, the mutation is performed by mutating the
feature vectors of the cloned antibodies as shown in Eq. (15)

abmutated:f ¼ ab:f þMV � /; ð15Þ
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Fig. 5. Antibody set clone and mutation process.
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where abmutated is the mutated antibody and MV is the mutation va-
lue. The mutation value MV is problem dependent. Typically, the
higher the affinity is, the smaller the mutation value. In our imple-
mentation, the mutation value MV is defined in Eq. (16)

MV ¼ 1� CV : ð16Þ

In Eq. (15), the vector / ¼ /1;/2; . . . ;/p

� �T is a randomly generated
vector whose dimension is the same as that of the feature vector.
Each element /i of the random vector is a normal random variable
defined by /i � N 0;r2

� �
, where N 0;r2

� �
is a normal random vari-

able with the standard deviation of r.
To make sure that the mutated antibody feature vectors stay

within the unit hyper-sphere, the norm of the feature vector for
each mutated antibody is checked after the mutation. This check
process is necessary because the mutated antibody feature vectors
may extend to the outside of the unit hyper-sphere, which would
cause negative affinity values. If the norm of the mutated feature
vector is greater than 1, Eq. (17) is applied to shrink the feature
vector of the mutated antibody back to the unit hyper-sphere
without changing the direction of the mutated antibody feature
vector. In Eq. (17), normðab:f Þ is the norm of the original antibody
feature vector. The randð Þ is a uniform random function with a va-
lue within the range of [0,1]. The term abmutated :f

norm abmutated :fð Þ is a unit vector

at the direction of the mutated antibody feature vector abmutated:f .
As shown in Eq. (18), the norm of the mutated antibody feature
vector after applying Eq. (17), normðab:f Þ þ randðÞ�
1� norm ab:fð Þð Þ, is greater than original antibody feature vector

normðab:f Þand less than 1. The direction of the adjusted antibody
feature vector is determined by the unit vector abmutated :f

norm abmutated :fð Þ, which

is the same as the mutated antibody feature vector. The segment
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AB in Fig. 4 shows the possible range where the resulting feature
vector of the Eq. (17) could be located, and the vector ~OC is the ad-
justed antibody feature vector

abmutated:f ¼ normðab:f Þ þ randð Þ � 1� normðab:f Þð Þð Þ

� abmutated:f
norm abmutated:fð Þ

� �
; ð17Þ

0 6 normðab:f Þ 6 normðab:f Þ þ randðÞ � 1� normðab:f Þð Þ 6 1: ð18Þ

The mutated antibodies are added into the antibody subset that cor-
responds to the class to which the ag belongs. Since the maximum
number of each antibody subset is limited to MaxABN, the resulting
antibody subset is sorted in a descending order according to the
affinity values of the antibodies with the given antigen. The top
MaxABN number of antibodies is selected to form the evolved anti-
body set. The rest of antibodies are discarded. The highest affinity
antibody is chosen as the candidate memory cell MCcandidate for pos-
sible updating of memory cell set, which will be discussed in the
next section.

3.2.2.2. Update memory cells. The candidate memory cell generated
in the antibody evolution process is used to update the memory
cell set to enhance the representation quality of memory cells for
each pattern. The pseudo-code of the memory cell update process
is shown in Fig. 6. The memory cell update occurs in the following
scenarios. First, when the root mean square distance, rms, between
the candidate memory cell and the memory cells in the same class
is greater than a specified threshold value MCIT, the candidate
memory cell is injected into this class of memory cells. Let
jMCSag:cj denote the total number of the memory cells in the subset
MCSag:c . The rms is calculated by Eq. (19)
Fig. 6. Memory ce
rms ¼ RMS dist1;dist2; . . . ;distjMCSag:c j
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMCSag:cj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjMCSag:c j

i¼1

dist2
i

vuut ; ð19Þ

where disti ¼ dist mci;MCcandidatedð Þ; mci 2MCSag:c; i¼ 1;2; . . . ; jMCSag:cj
and jMCSag:cj is the number of the memory cells in the subset
MCSag:c . If rms > MCIT , the candidate memory cell is added into
the memory cell subset MCSag:c . According to the second scenario,
the candidate memory cell compares with the matched memory
cell. The matched memory cell ðMCmatchedÞ is the memory cell that
has the highest affinity with the given antigen in the same class.
To find the matched memory cell, the affinity values of the training
antigen with the memory cells in the same class are calculated. The
memory cell that has the highest affinity with the given antigen ag
is chosen as the matched memory cell. Let MCmatched denote the
matched memory cell, it can be found by Eq. (20)

MCmatched ¼ arg
mc

max
mc2MCSag:c

aff ðag;mcÞ: ð20Þ

If rms6MCIT;aff MCcandidated;agð Þ> aff MCmatched;agð Þ &aff MCcandidated;ð
MCmatchedÞ>MCRT (a predefined threshold), the candidate memory
cell replaces the matched memory cell. In the third case, if
rms6MCIT;aff MCcandidated;agð Þ>aff MCmatched;agð Þ and aff MCcandidated;ð
MCmatchedÞ 6 MCRT , the candidate memory cell is also injected into
the memory cell subset MCSag:c .

3.2.3. Damage classification process
The memory cells generated in the training process are used to

classify test data during the classification process as shown in
Fig. 7. For a damage-pattern-unknown time series data, the affini-
ties between the feature vectors of the measurement data with
ll set update.



Fig. 8. Benchmark testing structure [14] (Photo courtesy Prof. Carlos Ventura, UBC).
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memory cells in the memory cell set are calculated. The pattern of
the test data is classified to the same class as the memory cell with
whom the test data has highest affinity.

4. Structure damage classification

Two civil structures are used to validate the AIPR-SDC algo-
rithm. One is the benchmark structure proposed by the IASC–ASCE
SHM Task Group, and the other one is a three-story frame provided
by Los Alamos National Laboratory.

4.1. Damage classification for benchmark structure proposed by IASC–
ASCE

4.1.1. Benchmark structure
The developed AIPR-based structure damage classifier has been

used to classify structure damage patterns using a benchmark
structure [14] proposed by the IASC–ASCE SHM Task Group as
shown in Fig. 8. The frame is a 4-story, 2 bay by 2 bay steel-frame
scale model structure in the Earthquake Engineering Research Lab-
oratory at the University of British Columbia (UBC) [25]. The struc-
ture has 16 accelerometers, 2 x-direction and 2 y-direction per
floor as shown in Fig. 9. Finite element models based on this struc-
ture were developed to generate the simulated data. Five damage
patterns are defined by the ASCE SHM Task Group and four of them
were used in our study. These damage patterns are (1) all braces of
the first floor removed; (2) all braces of the first and the third floor
removed; (3) one brace removed from the first floor; (4) one brace
removed from each of the first and the third floors. The data
generation program is available on the web at http://mase.wustl.
edu/wusceel/asce.shm/.

4.1.2. Data generation and AR order selection
The training and classification data are generated for normal

and four damage patterns under various operational conditions.
The excitation force modeled as filtered Gaussian white noise is ap-
plied to each floor as shown in Fig. 9. The ranges of each parameter
and their steps for generating training data are listed in Table 2.
The parameters include the damping, noise level, force intensity,
time step (sampling interval), and the time duration (sampling
time). Total of 1750 scenarios, 350 for each pattern is used to train
Memory cell set

Feature 
extraction: AR

Compress data: 
PCA

Input 
classification data

Output the class 
information

Find the class 
category

Yes

stop

No

More classification 
data

Fig. 7. Classification process of the AIPR-SDC.

Fig. 9. Analytical model of the left side steel-frame structure [25].
the designed classifier. In addition, the classification data under
300 simulation cases are generated for validating the classifier.
The parameter ranges and steps for the generation of classification
data are shown in Table 3. The acceleration data from 16 acceler-
ometers are reduced to a single time series using PCA method.
The compressed acceleration data for the normal pattern and the
damage pattern 2 are shown in Figs. 10 and 11 when the damping,
noise level, and force intensity are 0.02, 20, and 100, respectively.

The order of AR models is selected based on the Akaike’s Infor-
mation Criterion (AIC). An AIC is a measure of the goodness of fit of
an estimated statistical model. Given a data set, the model having
the lowest AIC is the best model. For five data sets used in the dam-
age classification, the value of AIC is calculated for different AR
Table 2
The parameters for generating training data.

Parameters Damping Noise level Force intensity Time (s)

Range 0.01–0.1 10–30 100–250 0–2
Step 0.01 5 25 1/512

http://mase.wustl.edu/wusceel/asce.shm/
http://mase.wustl.edu/wusceel/asce.shm/


Table 3
The parameters for generating classification data.

Parameters Damping Noise level Force intensity Time (s)

Range 0.015–0.1 12.5–30 112.5–250 0–2
Step 0.02 5 50 1/512
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Fig. 10. The compressed acceleration data for the normal pattern.
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Fig. 11. The compressed acceleration data for the damage pattern 2.
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Fig. 12. AR order selection using Akaike’s information criterion.

Table 4
Comparison of classification accuracy with other classification algorithms (bench-
mark structure).

Classification
algorithm

AIPR-SDC SVM Naive Bayes KNN-1 KNN-7

Classification
success rate

80.2% 85.2% 70% 71% 71%

Fig. 13. Three-story frame structure [15].
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orders as shown in Fig. 12. The AR order is selected to be 20 since
the reduction of the value of AIC is small when the AR order is
greater or equal to 20 for all data sets.

4.1.3. Classification results
The performance of the AIPR-SDC is validated using the training

and classification data described in the previous section. The clas-
sification accuracy is compared with other classification algo-
rithms as listed in Table 4, where SVM stands for support vector
machines and KNN stands for k-nearest neighbor algorithm. The
classification success rate is the ratio of correctly classified classi-
fication data to the whole set of classification data. The training
and classification processes are repeated 20 times, and the average
classification success rate is listed in Table 4. The training data are
used in the training process, and the classification data are used in
the classification process for calculating the classification success
rate. The system parameters selected for the AIPR-SDC are
CR ¼ 8; r ¼ 0:5; MCRT ¼ 0:985, and MCIT ¼ 0:55. For SVM meth-
od, the kernel function is selected to be polynomial; kernel param-
eter value is 3; and the generalization parameter C equals to 3. In
Section 4.3, we will discuss the impact of system parameters on



Fig. 14. Floor layout [15].

Table 6
Comparison of classification accuracy with other classification algorithms (three-
story frame structure).

Classification algorithm AIPR-
SDC

SVM Naive
Bayes

KNN-
1

KNN-
7

Classification success
rate

75.2% 70.9% 69.6% 80.3% 81.3%
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the classification success rate and the number of memory cells to
the AIPR-SDC classifier.

4.2. Damage classification for a three-story frame provided by Los
Alamos National Laboratory

4.2.1. Three-story frame structure
The three-story frame shown in Fig. 13 is chosen as a second

structure for the validation of the AIPR-SDC algorithm. The details
of the structure are given in the online documentation at [15]. A
shaker is attached at corner so that both translational and torsional
motions can be excited. The structure is instrumented with 24 pie-
zoelectric single axis accelerometers, two per joint as shown in
Fig. 14. A number of tests have been conducted by the LANL
researchers with different shaker input levels and simulated dam-
ages. The acceleration time series of 24 accelerometers are re-
corded in data files that are available for the download at [15].
These data files are named based on the damage location, damage
degree, shaker input level, and the date that the test was
conducted.

4.2.2. Damage pattern selection and feature extraction
Four damage patterns listed in Table 5 and the normal pattern

are selected for the verification of the AIPR-SDC algorithm. For each
pattern, five data files corresponding to 8-V shaker input are used.
Each data file contains 24 sensors’ data with 8192 number of data
points for each sensor. To generate feature vectors for each pattern,
the 8192 number of data form 36 of 227-point time series. Time
series for 24 accelerometers are reduced to one time series using
the PCA method. The compressed 36 time series are then fitted into
AR models. Since 36 feature vectors are generated from one file, a
total of 36 * 5 = 180 feature vectors are created for each pattern.
For the five patterns used in the validation, the generated feature
vectors are 180 * 5 = 900. One half of the 900 feature vectors (450
Table 5
Selected damage patterns.

Damage
patterns

Description

1 The bolts were removed between the bracket and the plate at
location 1C

2 The bracket was completely removed at location 1C
3 The bolts were removed between the bracket and the plate at

locations 1C and 3A
4 The bracket was completely removed at locations 1C and 3A
feature vectors) are used as the training data and the rest are used
as the classification data. The selection of the AR order is also based
on the AIC method. Applying the strategy followed in the case of
the benchmark structure discussed before, the AR order is chosen
to be 18 for this structure.

4.2.3. Classification results
The performance of the AIPR-SDC is validated using the training

and classification data. The classification accuracy is compared
with some of other classifiers, such as SVM, Naive Bayes, and
KNN as shown in Table 6. The system parameters selected for the
AIPR-SDC are CR = 8, r ¼ 0:5; MCRT ¼ 0:99, and MCIT ¼ 0:90. The
polynomial kernel function is chosen for SVM classifier with kernel
parameter and generalization parameter C equaling to 2.5 and 3,
respectively. The classification success rate is the average of 100
training and classification cycles.

4.3. Impact of system parameters on number of memory cells and
classification success rate

Figs. 15–20 show the impact of system parameters on the num-
ber of memory cells and the classification success rate. The values
of parameters used in these plots are CR ¼ 8; r ¼ 0:5;
MCRT ¼ 0:985; MCIT ¼ 0:55 for the IASC–ASCE structure, and
CR ¼ 8; r ¼ 0:5; MCRT ¼ 0:985; MCIT ¼ 0:95 for the LANL struc-
ture. The memory cell injection threshold, MCIT, is an important
parameter to control the number of memory cells as shown in
Fig. 15. For both IASC–ASCE benchmark structure and LANL
three-story frame, the number of memory cells is controlled at a
relatively low level when the value of MCIT is greater than a certain
value. This MCIT value is 0.6 for the IASC–ASCE benchmark struc-
ture and 0.9 for the LANL three-story frame. This result matches
the memory cell update algorithm shown in Fig. 6. The bigger
the MCIT value, the less chance the candidate memory cell has to
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Fig. 15. Number of memory cells vs. MCIT.
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Fig. 16. Number of memory cells vs. MCRT.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

300

350

400

450

500

σ value

N
um

be
r 

of
 M

em
or

y 
C

el
ls

IASC-ASCE

LANL

Fig. 17. Number of memory cells vs. r value.
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Fig. 18. Classification success rate vs. MCRT.
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Fig. 19. Classification rate vs. clonal rate.
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Fig. 20. Classification rate vs. r value.
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be injected into the memory cell set. From the memory cell update
algorithm, we can also see that when the value of the memory cell
replacement threshold, MCRT, is close to 1, the candidate memory
cell has a higher chance to be added into the memory cell set in-
stead of replacing the match memory cell. As a result, the total
number of memory cells increases. This observation is reflected
in Fig. 16.

The r value also affects the number of memory cells as shown
in Fig. 17. The parameter r controls the mutation process, and its
value impacts the diversity of the mutated antibody set. When
the value of r is small, the distances between the mutated anti-
body feature vectors and the original antibody feature vector are
very short. The improvement of the diversity of the mutated anti-
body set is small, which results in a small amount of candidate
memory cells are injected into memory cell set. When the value
of r turns a little bigger, the distances between the mutated anti-
body feature vectors and the original antibody feature vector are
getting longer. The number of candidate memory cells to be added
into the memory cell set is also increased. When r reaches to a cer-
tain value, the further increase of its value does not have signifi-
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cant improvement of the diversity of the antibody set due to the
unit hyper-sphere constraint. As a result, the number of memory
cells fluctuates.

The value of MCRT has a significant impact on the classification
success rate. When the MCRT value is small, the classification rate
is only about 50–55%. When the value of MCRT is close to 1, the
classification rate rises to 75–80%. The parameter MCRT controls
if the candidate memory cell replaces the matched memory cell
based on the affinity between the candidate memory cell and the
matched memory cell as shown in Fig. 6. When the MCRT is small,
the candidate memory cell has a high chance to replace the
matched memory cell. This may cause, sometimes, bad candidate
memory cells replacing good matched memory cells and result in
low classification success rate. When the value of MCRT gets bigger,
a candidate memory cell replaces a matched memory cell only
when the candidate memory cell has a high affinity with the train-
ing antigen and the matched memory cell. In addition, the candi-
date memory cell having a high affinity with the training antigen
will be injected into the memory cell set to increase the diversity
of the memory cell set and improve the classification success rate.
The drawback of the big MCRT value is that it leads to a big number
of memory cells.

Figs. 19 and 20 show the influence of clonal rate CR and r value to
the classification success rate respectively. For the IASC–ASCE
benchmark structure, the change of clonal rate from 2 to 8 increases
the classification success rate from 60% to 80%. For the LANL three-
story frame structure, however, the change of the clonal rate does
not have a significant impact on the classification success rate. The
similar result is observed for the IASC–ASCE benchmark structure
Fig. 21. Evolve antibody set us
as shown in Fig. 24 when the number of memory cells is reduced
to around 200 (Fig. 22) through the evolution of antibody set using
the matched memory cell. The value of r also affects the classifica-
tion success rate for the IASC–ASCE benchmark structure. When
the r value is among 0.3–0.6, the classification rate is about 80%.
As discussed previously, this range of r value results in a good distri-
bution of memory cells within the unit hyper-sphere. For the LANL
three-story frame structure, the change of the r value does not have
significant impact on the classification success rate.

4.4. The impact of system performance using matched memory cell to
evolve antibody population

To investigate the system performance using different antibody
evolution approaches, a process to update antibody population
through the matched memory cell is added before the training
antigen stimulate the antibody set. Since the matched memory cell
ðMCmatchedÞ has the highest affinity with the training antigen in the
same class, it is anticipated that incorporating offspring and mu-
tated antibodies of the matched memory cell into the antibody
set will increase the affinity level of the antibody set with the given
antigen. The algorithm of this process is shown in Fig. 21. Using the
same method described previously to find the matched memory
cell. Then, the matched memory cell is cloned. The number of
the cloned memory cell antibodies depends on the Hyper-clonal
rate HCR and the clonal value CV. Similar to the antibody set, the
higher the affinity, the larger the number of antibodies is cloned.
The number of cloned memory cell antibodies CloneNumber can
be calculated by Eq. (21)
ing matched memory cell.



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

1600

Memory Cell Injection Threshold (MCIT) with Memory Cell Evolution

N
um

be
r 

of
 M

em
or

y 
C

el
ls

Fig. 22. Number of memory cells with the stimulation of matched memory cell.
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Fig. 24. Classification rate with the stimulation of matched memory cell.
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Fig. 25. Classification rate without the stimulation of matched memory cell.
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CloneNumber ¼ round HCR � CVð Þ
¼ round HCR � aff MCmatched; agð Þð Þ: ð21Þ

The cloned memory cell antibodies are mutated to increase the
diversity of the antibody set (note that the cloned memory cell
antibodies will be added into the antibody set). The mutation is
performed by mutating the feature vectors of the cloned memory
cell antibodies as shown in Eq. (22)

mcmutated:f ¼ MCmatched:f þMV � /: ð22Þ

For more details regarding mutation and norm check, please refer to
the antibody set mutation process. The cloned and mutated mem-
ory cell antibodies are injected into the antibody subset to which
the given antigen belongs to.

The results of adding the stimulation of matched memory cell to
the antibody set are shown in Figs. 22–25 for the benchmark struc-
ture. Each point in these figures is the average of 10 training and
classification cycles. From these figures, we can see that the stim-
ulation of matched memory cell to the antibody set helps to de-
crease the number of memory cells. The classification success
rate, however, drops a little bit when this process is introduced.
The reason is that the candidate memory cells are very likely
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Fig. 23. Number of memory cells without the stimulation of matched memory cell.
selected from the mutated antibodies of the matched memory cells
in this process. These candidate memory cells may be injected into
the memory cell set or used to replace the matched memory cells.
Since the candidate memory cells are closely related to the original
matched memory cells, the introduction of these candidate mem-
ory cells to the memory cell set do not improve the diversity of
the memory cell set significantly.

5. Conclusions

A classification algorithm, inspired by the natural immune sys-
tem, for classifying structure damages is presented in this paper.
The presented classifier is designed based on the novel immune
system characteristics such as adaptation, evolution, and immune
learning. The evolution and immune learning algorithms make it
possible for the classifier to generate a high quality memory cell
set for recognizing various structure damage patterns. The AIPR-
based structure damage classifier has been used to classify struc-
ture damage patterns using a benchmark structure proposed by
the IASC–ASCE SHM Task Group and a three-story frame provided
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by Los Alamos National Laboratory. The validation results show
that the AIPR-based pattern recognition is suitable for structure
damage classification. The verification results also show that some
of the system parameters have crucial impacts on the classification
performance and the number of memory cells generated for the
classification. The comparison study of the classification accuracy
to other classifiers has also been conducted. For the benchmark
structure, the AIPR-SDC has a higher classification success rate
comparing to Naive Bayes classifier and KNN method, and a lower
success rate comparing to the SVM. For the LANL three-story
frame, the AIPR-SDC has a higher classification success rate com-
paring to SVM and Naive Bayes classifiers. However, the classifica-
tion success rate of the KNN method is better than that of the AIPR-
SDC.

References

[1] Chang PC, Flatau A, Liu SC. Review paper: health monitoring of civil
infrastructure. Struct Health Monitor 2003;2:257–67.

[2] Kirk RS, Mallett WJ. Highway bridges: conditions and the federal/state role,
2007.

[3] Lynch JP. An overview of wireless structural health monitoring for civil
structures. Philos Trans A: Math Phys Eng Sci 2007;365:345–72.

[4] Kolakowski P. Structural health monitoring – a review with the emphasis on
low-frequency methods. Eng Trans, IPPT 2007;55:239–75.

[5] Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage identification and
health monitoring of structural and mechanical systems from changes in their
vibration characteristics: a literature review, Los Alamos National Laboratory
Report LA-13070-MS, 1996.

[6] Sohn H, Farrar CR, Hemez FM, Czarnecki JJ, Shunk DD, Stinemates DW, et al. A
review of structural health monitoring literature: 1996–2001, Los Alamos
National Laboratory Report LA-13976-MS, 2003.

[7] Sohn H, Farrar CR. Damage diagnosis using time series analysis of vibration
signals. Smart Mater Struct 2001;10:446–51.

[8] da Silva S, Dias Jr M, Lopes Jr V. Damage detection in a benchmark structure
using AR-ARX models and statistical pattern recognition. J Brazil Soc Mech Sci
Eng 2007;29:174–84.
[9] Lee JJ, Lee JW, Yi JH, Yun CB, Jung HY. Neural networks-based damage detection
for bridges considering errors in baseline finite element models. J Sound Vib
2005;280:555–78.

[10] Ni YQ, Zhou XT, Ko JM. Experimental investigation of seismic damage
identification using PCA-compressed frequency response functions and
neural networks. J Sound Vib 2006;290:242–63.

[11] Kao CY, Hung SL. Detection of structural damage via free vibration responses
generated by approximating artificial neural networks. Comput Struct
2003;81:2631–44.

[12] de Castro LN, Von Zuben FJ. Learning and optimization using the clonal
selection principle. IEEE Trans Evolut Comput 2002;6:239–51.

[13] Watkins A, Timmis J, Boggess L. Artificial immune recognition system (AIRS):
an immune-inspired supervised learning algorithm. Genet Program Evolvable
Mach 2004;5:291–317.

[14] Structural health monitoring benchmark problem. <http://mase.wustl.edu/
wusceel/asce.shm/benchmarks.htm>.

[15] Test Structures and Applications in Los Alamos National Laboratory: 3 story
structure. <http://www.lanl.gov/projects/damage_id/data.shtml>.

[16] de Castro LN. Fundamentals of natural computing: basic concepts, algorithms,
and applications. Chapman& Hall/CRC; 2006.

[17] Castiglione F, Motta S, Nicosia G. Pattern recognition by primary and
secondary response of an Artificial Immune System. Theory Biosci
2001;120:93–106.

[18] Carter JH. The immune system as a model for pattern recognition and
classification. J Am Med Inform Assoc 2000;7:28–41.

[19] de Castro LN, Timmis J. Artificial immune systems: a new computational
intelligence approach. Springer; 2002.

[20] Lanaridis A, Karakasis V, Stafylopatis A. Clonal selection-based neural
classifier. In: 2008 8th international conference on hybrid intelligent
systems (HIS), 2008. p. 655–60.

[21] Zhong YF, Zhang LP, Huang B, Li PX. An unsupervised artificial immune
classifier for multi/hyperspectral remote sensing imagery. IEEE Trans Geosci
Remote Sens 2006;44:420–31.

[22] Zhong YF, Zhang LP, Gong JY, Li PX. A supervised artificial immune classifier for
remote-sensing imagery. IEEE Trans Geosci Remote Sens 2007;45:3957–66.

[23] Polat K, Gunes S, Tosun S. Diagnosis of heart disease using artificial immune
recognition system and fuzzy weighted pre-processing. Pattern Recognit
2006;39:2186–93.

[24] Theodoridis S, Koutroumbas K. Pattern recognition. Academic Press; 2008.
[25] Johnson EA, Lam HF, Katafygiotis LS, Beck JL. A benchmark problem for

structural health monitoring and damage detection. In: Proceedings of 14th
engineering mechanics conference, Austin, Texas, 2000.

http://mase.wustl.edu/wusceel/asce.shm/benchmarks.htm
http://mase.wustl.edu/wusceel/asce.shm/benchmarks.htm
http://www.lanl.gov/projects/damage_id/data.shtml

	Artificial immune pattern recognition for structure damage classification
	Introduction
	Natural and artificial immune systems
	AIPR-based structure damage detection and classification
	An AIPR-based structure damage classifier
	Major components and parameters of the AIPR-SDC
	Notational convention

	AIPR-based structure damage classifier algorithm
	Data pre-processing, feature extraction, and initialization
	Data standardization
	Dimensionality reduction using principle component analysis (PCA) method
	Feature extraction using multiple regression analysis
	Initialization of antibody set and memory cell set

	Classifier training process
	Evolution of antibody population using antigenic stimulation
	Update memory cells

	Damage classification process


	Structure damage classification
	Damage classification for benchmark structure proposed by IASC–ASCE
	Benchmark structure
	Data generation and AR order selection
	Classification results

	Damage classification for a three-story frame provided by Los Alamos National Laboratory
	Three-story frame structure
	Damage pattern selection and feature extraction
	Classification results

	Impact of system parameters on number of memory cells and classification success rate
	The impact of system performance using matched memory cell to evolve antibody population

	Conclusions
	References


