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This paper presents an unsupervised structural damage pattern recognition approach based on the fuzzy
clustering and the artificial immune pattern recognition (AIPR). The fuzzy clustering technique is used to
initialize the pattern representative (memory cell) for each data pattern and cluster training data into a
specified number of patterns. To improve the quality of memory cells, the artificial immune pattern rec-
ognition method based on immune learning mechanisms is employed to evolve memory cells. The pre-
sented hybrid immune model (combined with fuzzy clustering and the artificial immune pattern
recognition) has been tested using a benchmark structure proposed by the IASC–ASCE (International
Association for Structural Control–American Society of Civil Engineers) Structural Health Monitoring Task
Group. The test results show the feasibility of using the hybrid AIPR (HAIPR) method for the unsupervised
structural damage pattern recognition.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The structural health monitoring (SHM) is a process of observ-
ing a structure’s dynamic response measurements from a group
of sensors, extracting damage-sensitive features from these mea-
surements, and analyzing these features to determine the current
state of the structure (Kolakowski, 2007). Due to high instrument
and installation costs of wired SHM systems (Sazonov, Janoyan, &
Jha, 2004), the wireless sensor-network-based SHM is emerging
as a feasible approach since it allows dense sensing through many
inexpensive sensor nodes and is easy for deployment and mainte-
nance (Xu et al., 2004). While sensor network approach presents a
number of advantages, SHM sensor network systems currently face
a number of challenges (Farrar & Worden, 2007). Major challenges
in SHM sensor networks include: (1) how can we provide sustain-
able monitoring and control in an autonomous manner? For com-
plex structures, a monitoring sensor network may consist of
hundreds or thousands of sensor nodes and may be deployed in
environments that are difficult to access (embedded in physical
structures). Given such a deployment size and environment, sensor
networks are required to monitor structural changes and perform
damage diagnosis autonomously; (2) can we develop adaptable ap-
proaches to SHM that are able to dynamically adapt to changing
monitoring conditions? Due to resource constraints in sensor net-
ll rights reserved.
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works, a SHM sensor network that is able to manage its resources
effectively under different circumstances is critical; (3) how can we
detect and identify structural damages in an active way? The pas-
sive monitoring of structures by continuously gathering real-time
structural data causes data transmission problem due to limited
bandwidth and power available in wireless sensor networks; (4)
how can we establish an unsupervised damage diagnosis
methodology?

The natural immune system is an effective defense mechanism
for a given host against infections (De Castro, 2006). From a pattern
recognition perspective, the most appealing characteristic of the
immune system is its immune cells (B-cells and T-cells) carrying
surface receptors that are capable of recognizing and binding anti-
gens. The antibodies are soluble forms of the B-cell receptors that
are released from the B-cell surface to cope with the invading non-
self antigen. Antibodies bind to antigens leading to their eventual
elimination by other immune cells (De Castro & Timmis, 2002).
When a B-cell encounters a nonself antigen that has sufficient
affinity with its receptors, coupled with a stimulation signal from
T-cells, the B-cell is activated. It, therefore, undergoes a clonal
selection that increases the number of the activated B-cell and
the diversity of the antibody set. The generated B-cells with high
antigenic affinities are selected to become memory cells that re-
main in the immune system for months or years. The first exposure
of a B-cell to a specific type of antigen triggers the primary response
in which the pattern is recognized and the memory is developed
(Castiglione, Motta, & Nicosia, 2001). The memory cell for a
specific antigen that had stimulated in the primary response will
respond to previously recognized antigen in a much shorter time
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comparing to a newly activated B-cell (Carter, 2000). The novel
characteristics of the immune system have inspired the develop-
ment of artificial immune systems for various applications (Das-
gupta, 2006; Hart & Timmis, 2008). The major application areas
include data mining (Freitas & Timmis, 2007), pattern recognition
(Watkins, Timmis, & Boggess, 2004; Zhong, Zhang, Gong, & Li,
2007), fault diagnosis (Dasgupta, KrishnaKumar, Wong, & Berry,
2004; Taylor & Corne, 2003), and medical classification problems
(Polat, Gunes, & Tosun, 2006).

Due to the similarities of the human immune system and the
SHM systems, the artificial immune system (AIS) model could be
used as the basis for SHM strategies (Chen, 2009). This approach
is well suited to address SHM problems because: (1) the AIS-based
SHM is autonomous. The AIS-based SHM systems can automati-
cally manage structural monitoring tasks by dynamically generat-
ing and distributing the mobile monitoring agents; (2) the AIS-
based SHM is adaptive. The amount and type of molecules of the
immune system can adapt themselves to the antigenic challenges
via clonal selection (Cesana et al., 2005). The adaptive mechanism
of the natural immune system has great value in SHM sensor net-
works. The selective generation of mobile monitoring agents is
essential for producing large enough amount of specialized mobile
monitoring agents in resource-constrained sensor networks (Nego-
ita, 2005); (3) the AIS-based SHM is active. The concept of active
dispatching mobile monitoring agents (mimicking B-cells) helps
the distribution of specialized monitoring agents to the sites where
they are needed; and (4) the immune learning and memory mech-
anisms help the development of unsupervised damage detection
and pattern recognition, which is desirable in SHM.

This paper presents a hybrid immune model for unsupervised
structural damage pattern recognition based on the fuzzy cluster-
ing technique and the artificial immune pattern recognition (HAI-
PR). The fuzzy clustering (FC) algorithm is employed to generate
initial memory cells for damage patterns. These initial memory
cells are then evolved by an immune learning process to improve
the quality of memory cells to represent damage patterns. The pre-
sented unsupervised structural damage pattern recognition algo-
rithm has been tested using a benchmark structure (Structural
Health Monitoring Benchmark Problem) proposed by the IASC–
ASCE (International Association for Structural Control–American
Society of Civil Engineers) Structural Health Monitoring Task
Group. The test results show the feasibility of using the HAIPR
method for the unsupervised structural damage pattern recogni-
tion. The rest of the paper is structured as follows. Section 2 pre-
sents the algorithm design of the HAIPR approach. Section 3
Fig. 1. Overview of the
describes how to use the HAIPR method for the unsupervised dam-
age pattern recognition for the IASC–ASCE benchmark structure
and shows the validation results. Section 4 discusses the impact
of the system’s parameters on the performance of the HAIPR unsu-
pervised pattern recognition and the comparison of the HAIPR
method with conventional classification algorithms. Section 5 con-
cludes the presented work.
2. The HAIPR approach for unsupervised structural damage
pattern recognition

2.1. The HAIPR approach

In unsupervised structural damage pattern recognition, the pat-
tern information of the training data is not available. The presented
HAIPR unsupervised pattern recognition method employs fuzzy
clustering algorithms to establish the initial representative for each
pattern of the training data. The representative for each pattern
generated by the fuzzy clustering algorithms, however, includes
limited information. For example, the fuzzy clustering algorithms
use one point in a multidimensional space to represent each cluster
(pattern) for a compact data set. To obtain more informative pattern
representative (memory cells) and provide the evolution capability,
the artificial immune pattern recognition method is employed to
improve the quality of memory cells for each damage pattern.

Fig. 1 shows the major components of the HAIPR algorithm. The
measurement data from multiple sensors are compressed from n-
dimensional space (n sensors) into one dimensional space by the
Principal Component Analysis (PCA) algorithm. The features of
the compressed time series sensor data are extracted from the auto
regression (AR) model of the time series. The initial memory cells
for sensor data patterns are generated by the fuzzy clustering algo-
rithm. These initial memory cells are also used to classify the train-
ing data into a specified number of patterns based on the nearest
neighbor criterion. The classified training data are then used to
evolve memory cells in an immune learning process based on clo-
nal selection principle. The evolved memory cells are then used for
the structural damage pattern recognition.

2.2. Feature extraction from sensor data

In structural damage pattern recognition, damage patterns are
represented by feature vectors extracted from dynamic response
data of a structure. A feature vector consists of a number of
HAIPR approach.
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features. The feature selection is critical to the success of the dam-
age pattern recognition (Theodoridis & Koutroumbas, 2008). Fea-
ture selection is the process to identify the measurable quantities
that make damage patterns distinct from each other. In the HAIPR
algorithm implementation, following steps are designed to process
raw sensor data and extract damage-sensitive feature vectors.
First, the time series sensor data are normalized using the mean
and standard deviation. Let matrix Z = (zij)m�n denote the time ser-
ies of sensor data, where each row is corresponding to the n num-
ber of data generated by one sensor and each column is the sensor
data collected by the m sensors at a given time. Let z

*

i ¼ ðzi1; zi2; . . . ;

zinÞ; i ¼ 1;2; . . . ;n denote the ith row of the matrix Z, which is the
sensor data of the ith sensor. The standardized sensor data
Y = (yij)m�n can be calculated by yij ¼

zij�li
ri

j ¼ 1;2; . . . ; n, where
yij is the standardized value of the corresponding value of zij, li

and ri are the mean and standard deviation of the time series z
*

i.
Second, time series sensor data sets from multiple sensors are re-
duced to lower dimensions by the Principal Component Analysis
(PCA) (Pearson, 1901) method for extracting a feature vector for
a local area. In our implementation, the multiple data sets from
m number of sensors are compressed into one data set. It means
that all the sensor data are projected onto the principal component
that has the biggest eigenvalue. Let W denote the m �m covari-
ance matrix of the standardized time series signals Y. The matrix
W can be calculated by W ¼ 1

n�1 YYT . Let ki and v
*

i denote the ith
eigenvalue and eigenvector of matrix W, respectively. So, W, ki,
and v

*

i satisfy Wv
*

i ¼ kiv
*

i, where eigenvector v
*

i is called the princi-
pal component. Let v

*

1 denote the vector that is corresponding to
the biggest eigenvalue. The relationship between the compressed
data x

*
¼ ðx1; x2; . . . ; xnÞ;v

*

1 and Y is x
*
¼ v

*T
1Y . Third, the feature vec-

tor for a local area is extracted from the compressed time series.
The AR algorithm is chosen to model the compressed time series
data. Each compressed time series x is fitted into an AR model of
order p as shown in Eq. (1).

xk ¼
Xp

i¼1

aixk�i þ rk k ¼ pþ 1; . . . ;n ð1Þ

where the rk is the residual between the sensor data and the AR
model value. The order of the AR model is chosen based on the
Akaike’s information criterion (AIC). An AIC is a measure of the
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Fig. 2. The AR-model-based feature
goodness of fit of an estimated statistical model. Given a data set,
the model having the lowest AIC is the best model. The vector
a = (a1, a2, . . ., ap)T 2 Rp, is selected as the feature vector of the time
series. The feature vector is calculated using the Least Square (LS)
method. Rewrite Eq. (1) in following format:

Aa ¼ b ð2Þ

where

A ¼

xp xp�1 � � � x1

xpþ1 xp � � � x1

� � � � � � . .
.

� � �
xn�1 xn�2 � � � xn�p�1

2
66664

3
77775; b ¼

xpþ1

xpþ2

..

.

xn

2
66664

3
77775 ð3Þ

The feature vector a can be calculated as follows:

a ¼ ðAT AÞ�1AT b ð4Þ

The effectiveness of the AR-model-based feature vectors is
tested using the experimental data of the benchmark structure
(Structural Health Monitoring Benchmark Problem) proposed by
the IASC–ASCE SHM Task Group. The feature vectors of four dam-
age patterns and the normal pattern are visualized using the Sam-
mon nonlinear mapping algorithm (Sammon, 1969) as shown in
Fig. 2. Although some overlapping among different patterns exists,
the AR-model-based feature vectors are able to distinguish these
five data patterns to a certain extent.

2.3. Initial memory cell generation

To generate the initial memory cell for each data pattern and
cluster training data into a specified number of patterns, the fuzzy
clustering method is employed. Since the damage-sensitive feature
vectors are compact clusters as shown in Fig. 2, a point representa-
tion is used to represent each pattern. A fuzzy k-clustering of
K ¼ fa1; a2; . . . ;aNg is defined by a set of functions uj : K!
½0; 1�; j ¼ 1;2; . . . ; k, where ai 2 Rp, i = 1, 2, . . ., N is the feature
vector of the training data in p-dimensional real value space and
N is the number of feature vectors. Let hj 2 Rp denote the parame-
terized representative of the jth cluster, h � ½hT

1; h
T
2; . . . ; hT

k �
T ; U de-

note an N � k matrix whose (i, j) element equals to uj(ai) ; and
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Fig. 3. The evolution of memory cells.

Table 1
The antibody set evolution algorithm for each antigen stimulation.

Begin
Input an antigen ag;
For each antibody ab which is in the same pattern as ag do

Clone antibody ab based on the affinity with the ag;
Mutate the cloned antibodies;
Keep the mutated antibodies staying within the unit hyper-sphere;
Form a new antibody set using top MaxABN number of antibodies;

End for-loop
Select the highest affinity antibody as the candidate memory cell;

End
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d(ai, hj) denote the dissimilarity between ai and hj. For the point
representative case, the dissimilarity d(ai, hj) could be any type of
distance between two points. To achieve the goal of the estimation
of h that best characterizes the clusters underlying K, the fuzzy
clustering algorithm is derived by minimizing the cost function
in Eq. (5) with respect to h and U, subject to the constrainsPk

j¼1uij ¼ 1, i = 1, 2, . . ., N, where uij2 ½0; 1�;i¼1;2; . . .N; j¼1;2; . . . ;k
and 0<

PN
i¼1uij <N; j¼1;2; . . . ;k. The parameter q(>1) is called a

fuzzifier.

Jðh;UÞ ¼
XN

i¼1

Xk

j¼1

uq
ijdðai; hjÞ ð5Þ

The outputs of the fuzzy k-means are the point representative of
patterns (clusters). These points are used as initial memory cells
for k patterns. These initial memory cells are also used to classify
the training data by using the nearest neighbor criterion. Given a
training data, the distance to the memory cells are calculated.
The training data is classified to the pattern with whose memory
cell the training data has the shortest distance. The classified train-
ing data are then used in the memory cell evolution process for
improving the quality of the memory cells.

2.4. Memory cell evolution using immune learning

The initial memory cell set (a collection of memory cells for all
the data patterns) generated by the fuzzy clustering algorithm only
has one memory cell for each pattern. To improve the quality of
memory cell set, the AIPR method (Chen & Zang, 2009) is used to
evolve the memory cell set. The AIPR algorithm in Chen and Zang
(2009) is based on the CLONALG algorithm in De Castro and Von
Zuben (2002) and the AIRS in Watkins et al. (2004). The antibody
set evolution is similar to the CLONALG. The memory cell set up-
date, however, is specifically designed to obtain better representa-
tive for each damage pattern. For example, the memory cell
replacement threshold defined in Chen and Zang (2009) is effective
to improve the pattern recognition success rate. The evolution of
the memory cell set includes two sub-processes: the evolution of
the antibody set and the update of the memory cell set. The flow
chart of the memory cell set evolution process is shown in Fig. 3.
The training data clustered by the fuzzy clustering algorithm and
nearest neighbor criterion are used to stimulate this process. The
initial antibody set is generated by the random selection of anti-
bodies from the classified training data.

2.4.1. Evolution of the antibody set
The stimulation of the antibody set by an invading antigen (a

training data) will cause the evolution of the antibody set. The
description of the antibody set evolution algorithm for each anti-
gen stimulation is given in Table 1. For a training antigen ag, the
affinity between the antigen and each antibody ab that is in the
same pattern as the antigen is calculated. Let ab � f = b = (b1, b2, . . .,
bp)T 2 Rp and ag � f = c = (c1, c2, . . ., cp)T 2 Rp denote the feature vec-
tors of an antibody ab and the antigen ag, respectively. The affinity
between an antibody and the antigen is defined as (6).

aff ðab; agÞ ¼ 1� 1
2

distðb; cÞ ð6Þ

where dist(b, c) is the Euclidian distance between the feature vec-
tors b and c. The probability that an antibody ab is cloned depends
on its affinity with the antigen. The number of the cloned antibod-
ies, CloneNumber , depends on the clonal rate CR and the clonal va-
lue CV. The CR is an integer value used to control the number of
antibody clones allowed for the activated B-cell. The CV is a value
that measures the response of a B-cell to an antigen. According to
the natural immune system, the higher the affinity, the larger the
number of antibodies is cloned. We choose the clonal value being
equal to the affinity value. The CloneNumber is then calculated by
the Eq. (7).

CloneNumber ¼ roundðCR � CVÞ ¼ roundðCR � aff ðab; agÞÞ ð7Þ

where round(�) is an operator that rounds its value to the closest
integer.

The cloned antibodies undergo a maturation process that in-
creases the diversity of the antibody set. The mutation is per-
formed by mutating the feature vectors of the cloned antibodies
as shown in Eq. (8).

abmutated � f ¼ ab � f þMV � / ð8Þ

where abmutated is the mutated antibody and MV is the mutation va-
lue. Typically, the higher the affinity is, the smaller the mutation va-
lue. In our design, the mutation value MV is defined as MV = 1 � CV.
In Eq. (8), the vector / = (/1, /2, . . ., /p)T is a randomly generated
vector whose dimension is the same as that of the feature vector.
Each element /i is a normal random variable defined by
/i � N(0, r2), where N(0, r2) is a normal random variable with the
standard deviation of r.
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The mutated antibodies are added into the antibody subset to
which the ag belongs. Since the maximum number of each anti-
body subset is limited to a predefined threshold, MaxABN , the
resulting antibody subset is sorted in a descending order according
to the affinity values of the antibodies with the given antigen. The
top MaxABN number of antibodies is selected to form the evolved
antibody set. The rest of antibodies are discarded. The antibody
with the highest affinity is chosen as the candidate memory cell
MCcandidate for the updating of memory cell set.
Fig. 4. Benchmark test structure (Structural Health Monitoring Benchmark
Problem).
2.4.2. Update memory cell set
The candidate memory cell generated in the antibody set evolu-

tion process is used to update the memory cell set to enhance the
representative quality of memory cells for each pattern. The
description of the memory cell set update algorithm is given in Ta-
ble 2. The memory cell update occurs in the following scenarios.
First, when the root mean square distance, rms, between the candi-
date memory cell and the memory cells in the same pattern is
greater than a specified threshold value Memory Cell Injection
Threshold (MCIT), the candidate memory cell is injected into this
pattern of memory cells. Let ag � c denote the pattern label of the
antigen ag; MCSag�c denote the memory cell subset with the same
pattern as the given antigen ag; and |MCSag�c| denote the total num-
ber of the memory cells in the subset MCSag�c. The rms is defined by
the Eq. (9).

rms ¼ RMSðdist1;dist2; . . . ;distjMCSag:c jÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMCSag:cj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjMCSag:c j

i¼1
dist2

i

r
ð9Þ

where disti = dist(mci, MCcandidate), mci 2MCSag.c, and i = 1, 2,
. . ., |MCSag�c|. If the rms is greater than the threshold MCIT, the
candidate memory cell is added into the memory cell subset
MCSag�c. In the second case (the rms is less than or equal to MCIT),
the candidate memory cell compares with the matched memory
cell. The matched memory cell is the memory cell that has the
highest affinity with the given antigen in the same pattern. To find
the matched memory cell, the affinity values of the training anti-
gen with the memory cells in the same pattern are calculated. The
memory cell that has the highest affinity with the given antigen ag
is chosen as the matched memory cell, which is denoted by
MCmatched. When the affinity between MCcandidate and the given
antigen ag is greater than the affinity between MCmatched and anti-
gen ag, the candidate memory cell replaces the matched memory
cell if the affinity between MCcandidate and MCmatched is greater than
the Memory Cell Replacement Threshold (MCRT), otherwise the
candidate memory cell is added into the memory cell subset
MCSag�c.
Table 2
The memory cell set update algorithm.

Begin
Input antigen ag;
Find the matched memory cell;
Calculate the root mean square rms for the candidate memory cell;
If rms > MCIT

Add the candidate memory cell into the memory cell set;
Else if ((aff(MCcandidate, ag) > aff(MCmatched, ag)) and (aff(MCcandidate,
MCmatched) > MCRT))

Replace the matched memory cell by the candidate memory cell;
Else if (aff(MCcandidate, ag) > aff(MCmatched, ag))

Add the candidate memory cell into the memory cell set
End if

End
3. Using HAIPR approach for unsupervised civil structural
damage pattern recognition

The HAIPR method has been tested using a benchmark structure
(Structural Health Monitoring Benchmark Problem) proposed by
the IASC–ASCE SHM Task Group as shown in Fig. 4. The structural
data used in our study are the experimental data. In the experi-
mental setup, a variety of damage cases were simulated by remov-
ing braces or loosening bolts in the test structure. The details of the
simulated damage patterns are listed in Table 3. The excitation
methods used in the structure test are listed in Table 4. In the
experimental study, a total of 15 accelerometers were used to mea-
sure the acceleration data of the structure, three accelerometers for
each level. Fig. 6 shows one of normal acceleration time series
measured by the 6th accelerometer, and Fig. 7 shows one of dam-
age pattern 1 acceleration time series measured by the same accel-
erometer. The acceleration data for each damage pattern or the
normal pattern were recorded in a data file. Four damage patterns
(configuration 2, 4, 5, and 7) and the normal pattern (configuration
1) were selected to validate the HAIPR unsupervised pattern recog-
nition method. To generate feature vectors for each data pattern,
24,000 points of data in each data file formed 116 of 1000-point
time series by advancing 200 points each time. Time series data
for 15 accelerometers were reduced to one time series using the
PCA method. The information contained in the principal compo-
nent was investigated by observing the percentage of the largest
eigenvalue in the total amount of the eigenvalues. Fig. 5 shows
Table 3
The configurations for simulated damage patterns.

Configuration Description

1 Fully braced configuration (normal pattern)
2 Missing all east side braces
3 Removed braces on all floors in one bay on south east corner
4 Removed braces on 1st and 4th floors in one bay on south

east corner
5 Removed braces on 1st floor in one bay on south east corner
6 Removed braces on all floors on east face, and 2nd floor

braces on north face
7 All braces removed on all faces
8 Configuration 7, plus loosen bolts on all floors – both ends of

beams on east face, north side
9 Configuration 7, plus loosed bolts on floors 1 and 2 – both

ends of beams on east face, north side
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Fig. 6. Normal acceleration data measured by the 6th accelerometer.
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Fig. 7. Damage pattern 1 acceleration data measured by the 6th accelerometer.
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Fig. 5. The percentage of eigenvalue in one of covariance matrix.

Table 5
The assignment of the training data to each pattern.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Percentage
of success

Normal 3 4 0 8 101 87.07
Damage 1 0 0 116 0 0 100.00
Damage 2 0 0 0 95 21 81.90
Damage 3 0 84 0 4 28 72.41
Damage 4 90 22 0 0 4 77.59

Table 4
Excitation methods used in the experimental structure test.

Excitation method Description

Sledge hammer Hammer test (DYTRAN Dynapulse 5803A 12 lb sledge
hammer)

Electro-dynamic
shaker

Shaking induced by the electrodynamic shaker with
moving mass

– random tests
– sine sweep tests (s)
– sine sweep tests (s1)
– sine sweep tests (s2)

Note: not all sine sweep tests were needed for all
configurations

Ambient vibration Ambient test (no excitation beyond ambient
vibrations)
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the percentage of each eigenvalue in one of covariance matrix gen-
erated by 15 accelerometer measurement. The compressed time
series sensor data were then fitted into AR models. The AR order
was selected to be 20 since the AIC values are small when the AR
order is greater than or equal to 20. Since each pattern has 116 fea-
ture vectors, a total number of 116 � 5=580 feature vectors were
generated for four damage patterns and the normal pattern.

These 580 feature vectors of experimental data were used to
verify the unsupervised pattern recognition algorithm. During the
training process, the pattern labels of the 580 feature vectors were
erased. The fuzzy clustering algorithm was applied to find the pat-
tern representative for each pattern. Since the feature vectors of
the structural data are compact clusters as shown in Fig. 2, a point
representative is used to represent each pattern. The outputs of the
fuzzy clustering algorithm are five point representatives for five
patterns. Each point representative is a vector in R20. The dimen-
sion of the point representative is the same as the order of the
AR model that is used to represent feature vectors. These five point
representatives were used to form the initial memory cell set and
also used to classify the training data to five patterns based on the
nearest neighbor criterion. The classified training data were then
used to improve the quality and increase the number of memory
cells through the immune learning. To test the memory cells gen-
erated by the immune learning process, the previously created 580
feature vectors were reused with pattern labels. These feature vec-
tors were classified by the memory cells to five clusters. Table 5
shows the number of the feature vectors assigned to each cluster.

To find the statistical distribution of the pattern recognition
success rate, the HAIPR algorithm was used to recognize 580 fea-
ture vectors for 100 times. The resulting distribution of the pattern
recognition success rate is shown in Fig. 8. The numbers on the top
of each bar stand for the times that the pattern recognition success
rate falls into the range indicated on the x-axis. For example, the
pattern recognition success rate within the range of 82.83–
83.36% occurs 21 times among 100 tests. The pattern recognition
success rate is defined as the ratio of data whose pattern are
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Fig. 8. The distribution of HAIPR success rate.
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correctly recognized to the whole set of test data. The system
parameters used in the test are CR = 8, r = 0.5, MCRT = 0.95,
MCIT = 0.60, and q = 2.

4. Performance analysis of the HAIPR method

The performance of the HAIPR-based unsupervised structural
damage pattern recognition is evaluated. To investigate the effect
of the fuzzifier parameter, the pattern recognition success rate with
different fuzzifier values are calculated and plotted in Fig. 9. Three
types of distances: Euclidian distance, Diagonal distance, and
Mahalanobis distance, are used in Fig. 9. From Fig. 9, we can see
that the value of fuzzifier has a significant impact on the pattern
recognition success rate. For the diagonal distance, the pattern rec-
ognition success rate is over 79% when the value of the fuzzifier is
within the range of 1–3. Further increase the value of the fuzzifier,
the pattern recognition success rate will gradually drop to 55%.
Since the overall performance of the diagonal distance measure
is better than other types of distances, the diagonal distance is used
for the following analysis and plots. The definition of the diagonal
distance is as follows. Assume that there is N number of feature

vectors ~ai ¼ ~ai
1;~ai

2; � � � ;~ai
p

� �T
2 Rp; i ¼ 1;2; � � � ;N in p-dimen-

sional space. The N number of feature vectors forms a matrix B
as below:

B ¼ ð~a1;~a2; � � � ;~aNÞ ð10Þ
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Fig. 9. Comparison of the pattern recognition success rate using different type of
distance.
The covariance matrix C of the matrix B is defined as C ¼ 1
N�1 BBT . Let

C = (cij)p�p and define a diagonal matrix D as follows:

D ¼

c11 0 � � � 0 0
0 c22 � � � 0 0

..

.
� � � . .

. ..
. ..

.

0 0 � � � cp�1p�1 0
0 0 0 0 cpp

2
66666664

3
77777775

ð11Þ

The diagonal distance between two feature vectors~ai0 and~aj0 is de-
fined as:

dð~ai0 ;~aj0 Þ ¼ ~ai0 �~aj0
� �T

D ~ai0 �~aj0
� �

ð12Þ

The impact of the AIPR parameters, MCRT and CR, on the perfor-
mance of the algorithm is shown in Figs. 10 and 11. Fig. 10 shows
how the value of the MCRT impacts the pattern recognition success
rate. When the value of the MCRT is smaller than 0.85, the pattern
recognition success rate is only about 70%. The pattern recognition
success rate rises rapidly when the MCRT value is greater than 0.85.
The reason is that more candidate memory cells are injected into
the memory cell set. Fig. 11 shows the impact of the CR and MCRT
Memory Cell Replacement Threshold (MCRT)

Fig. 10. Pattern recognition success rate vs. memory cell replacement threshold
(MCRT).
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on the number of memory cells. The number of memory cells is
one of major performance measurements for a pattern recognition
algorithm. The number of memory cells is critical in the SHM sen-
sor networks. Although a big memory cell set may raise the pattern
recognition success rate, it will result in heavy computational load
and slow system response. The value of the MCRT has a significant
impact on the number of memory cells as shown in Fig. 11. When
the value of the MCRT gets bigger, less matched memory cells are
replaced, while more candidate memory cells are added into the
memory cell set. The value of the CR also affects the number of
memory cells. The appropriate values of the CR and MCRT should
be chosen to limit the number of memory cells and achieve a rea-
sonable pattern recognition success rate.

The impact of the number of training antigens on the pattern
recognition success rate is also investigated. Fig. 12 shows the pat-
tern recognition success rate with various number of training anti-
gens. Given a number of training antigens, 10 cycles of training and
pattern recognition are preformed. The mean value of 10 success
rates is plotted in Fig. 12. Fig. 12 shows that the pattern recognition
success rate fluctuates when the number of the training data is
small. The increase of the number of training data stabilizes the
pattern recognition success rate.
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Fig. 12. Pattern recognition success rate vs. the number of training antigens.
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Fig. 13. Comparison of the pattern recognition success rate among the HAIPR, FC-
SVM, and FC-Naive Bayes.
A comparison study of the pattern recognition success rate
among the HAIPR, FC-SVM, and FC-Naive Bayes is shown in
Fig. 13. The 580 feature vectors generated above are used in the
comparison study. The system parameters selected for the HAIPR
algorithm are CR = 8, r = 0.5, MCRT = 0.95, MCIT = 0.60. When the
value of the fuzzifier q varies from 1 to 5 with step 0.05, the pattern
recognition success rates for different pattern recognition algo-
rithms are calculated and the results are shown in Fig. 13. From
Fig. 13, we can see that the HAIPR, FC-SVM, and FC-Naive Bayes
methods have similar pattern recognition success rate if the value
of the fuzzifier q is less than 2.8. When the q value is greater than
2.8, the HAIPR method outperforms significantly comparing to the
FC-SVM and FC-Naive Bayes algorithms.
5. Conclusions

This paper presents an unsupervised pattern recognition algo-
rithm based on the fuzzy clustering technique and the artificial im-
mune pattern recognition. The fuzzy clustering method is used to
generate initial memory cell for each damage pattern based on
the structure’s dynamic response data. The initial memory cells
are evolved using immune learning mechanism to improve the
representative quality of memory cells. The HAIPR method has
been used for unsupervised structural damage pattern recognition
with a benchmark structure proposed by the IASC–ASCE SHM Task
Group. The performance analysis of the HAIPR-based unsupervised
structural damage pattern recognition illustrates that some of the
system’s parameters, such as fuzzifier, distance types in fuzzy clus-
tering algorithm, and the memory cell replacement threshold in
the artificial immune pattern recognition algorithm, have a signif-
icant impact on the pattern recognition success rate and the num-
ber of memory cells. The comparison of the HAIPR, FC-SVM, and
FC-Naive Bayes algorithms shows that the HAIPR method outper-
forms other two methods for the unsupervised damage pattern
recognition using the IASC–ASCE benchmark structure.
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