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a b s t r a c t

This paper presents an agent-based artificial immune system approach for adaptive damage detection

in distributed monitoring networks. The presented approach establishes a new monitoring paradigm by

embodying desirable immune attributes, such as adaptation, immune pattern recognition, and self-

organization, into monitoring networks. In the artificial immune system-based paradigm, a group of

autonomous mobile monitoring agents mimic immune cells (such as B-cells) in the natural immune

system, interact locally with monitoring environment, and respond to emerging problems through

simulated immune responses. The presented immune-inspired monitoring paradigm has been applied

to structural health monitoring. The ‘‘antibody’’ of a mobile monitoring agent is a pattern recognition

algorithm tuned to a certain type of structural damage pattern. The mobile monitoring agent performs

damage diagnosis based on structural dynamic response data. Mobile monitoring agents communicate

with each other and collaborate with network components based on agent interaction protocols defined

in agent standards, the Foundation for Intelligent Physical Agents standards. A mobile agent system

embedded in sensor nodes supports the selective generation, migration, communication, and

management of mobile monitoring agents automatically. The active structural health monitoring is

achieved by distributing mobile monitoring agents to the sites where they are needed. The structural

damage diagnosis using mobile monitoring agents and artificial immune pattern recognition method

has been tested using a scaled steel bridge structure. The test result shows the feasibility of using this

approach for real-time structural damage diagnosis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Technology is taking us to a world where numerous networked
devices interact with the physical world in multiple ways and at
multiple scales, from the global Internet scale down to micro and
nano-devices. The distributed sensing and monitoring systems are
one type of these systems, which are playing an important role in
U.S. economic prosperity, security, and quality of life. Due to ever-
increasing complexity of systems and unpredictable working
conditions, the distributed sensing and monitoring systems need
to possess high quality of adaptability, autonomy, and reliability.
The fundamental research challenge is to establish robust
decentralized computing systems that interact with physical
world, be capable of operating under changing environments, and
exhibit the desired response behavior under physical constraints
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such as communication bandwidth, energy consumption, and
processing power.

To address aforementioned challenges, a number of research-
ers have made a great effort to improve the flexibility, scalability,
and intelligence of the networked systems. Agent technology is
one of the promising methods to achieve these goals. From the
reported literature, agent approach has been applied for the
network fault detection (Al-Kasassbeh and Adda, 2009), data
fusion and management (Zhu et al., 2007), interoperable network
framework (Jabeur et al., 2009), grid computing (Shi et al., 2006),
mobile computing test system (Ilarri et al., 2009), and sensor
network middleware to provide dynamic programming environ-
ments for flexible network management (Boulis et al., 2003;
Szumel et al., 2005; Levis and Culler, 2002).

An artificial immune system (AIS) is suitable to handle the
great complexity of the reality (Castiglione et al., 2001). The
reason behind this is that the natural immune system incorpo-
rates a variety of artificial intelligence techniques, such as
pattern recognition through a network of collaborating agents,
adaptive learning through memory, and an advanced selection
mechanism of the best B-cells (Lanaridis et al., 2008). The
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desirable characteristics of the immune system have inspired the
development of artificial immune systems for various applica-
tions. Basic immune-inspired algorithms include negative selec-
tion, clonal selection, immune networks, and dendritic cell. The
negative selection and dendritic cell algorithms have been applied
for anomaly detection, including intrusion detection (Boukerche
et al., 2007; Tarakanov, 2008), computer security (Harmer et al.,
2002), and misbehavior detection (Sarafijanovic and Le Boudec,
2005; Dasgupta et al., 2005). The clonal selection and immune
network algorithms gained applications in the fields of pattern
recognition and data clustering (Watkins et al., 2004; Zhong et al.,
2007; Chen and Zang, 2009).

This paper presents an immune-inspired monitoring paradigm,
which embodies desirable immune attributes, such as adaptation,
learning capability, and self-organization, into distributed mon-
itoring systems. In the presented paradigm, mobile monitoring
agents mimic immune cells (such as B-cells) in the natural
immune system for the anomaly detection and pattern recogni-
tion in distributed monitoring systems. Mobile monitoring agents
interact locally by sensing and monitoring the environment, and
respond to emerging problems through simulated immune
responses. The presented bio-inspired monitoring paradigm has
been applied to Structural Health Monitoring (SHM) networks.
Adaptive structural health monitoring is critical for a quick
response to operational and environmental changes. The pre-
sented artificial immune system approach provides adaptive
monitoring through the evolution of monitoring agents and
memory cells. The active structural health monitoring is achieved
by distributing mobile monitoring agents to the sites where they
are needed. The monitoring task is managed automatically by an
embeddable mobile agent system. The major contribution of the
presented work lies in providing a systematic approach to address
the adaptive monitoring issues with an integrated network
framework consisting of agent-based network middleware,
damage pattern recognition through mobile monitoring agents,
and the embodiment of desirable immune mechanisms.

The rest of the paper is structured as follows. Section 2
discusses desirable characteristics of natural immune system for
adaptive monitoring. Section 3 introduces an agent-based net-
work framework to mimic immune functions. Section 4 presents
artificial immune pattern recognition method for damage classi-
fication. Section 5 illustrates structural damage detection using
artificial immune pattern recognition and mobile monitoring
agents. Section 6 concludes the presented work.
2. Artificial immune system approach for adaptive
monitoring

The natural immune system is an effective defense mechanism
for a given host against infections (de Castro, 2006). The immune
system protects living organisms from invading antigens through
the collaboration of immune cells (such as B-cells and T-cells), as
shown in Fig. 1. The surface receptor (antibody) of an immune cell
can recognize and bind to antigens. The adaptive immune
response is initiated by an encounter between a B- or T-cell and
its specific antigen. The adaptive immune response achieves two
goals: the number of cells that are capable of responding to a
particular antigen are multiplied (clonal expansion), and these
new generated immune cells are able to produce a large number
of antibodies for binding to the intruder (Delves et al., 2006).
When a B-cell encounters a nonself antigen that has sufficient
affinity with its receptors, the antibody of the B-cell binds to the
antigen, marking it for destruction. To avoid lymphocyte
activation to ‘self’ substances, the activation of a B-cell requires
the co-stimulation by a helper T-cell (TH). Helper T-cells can
recognize antigen in antigen presenting cells. Once receiving a
stimulation signal from a helper T-cell, the B-cell is activated. It,
therefore, undergoes a clonal selection process in which the B-cell
proliferates and differentiates into antibody secreting cells
(plasma cells) and memory cells. The memory cells will remain
in the immune system for months or years. The first exposure of a
B-cell to a specific type of antigen triggers the primary response in
which the pattern is recognized and the memory is developed
(Castiglione et al., 2001). The secondary response occurs when the
same antigen is encountered again. The memory cell for a specific
antigen that had stimulated the primary response will respond to
a previously recognized antigen in a much shorter time compared
to a newly activated B-cell (Carter, 2000). Activated antigen-
specific killer T-cells (TK) kill virally infected cells either by lysing
them or through the secretion of soluble mediators which act to
inhibit viral replication.

Due to the similarities of the human immune system and
distributed monitoring systems, the immune system model could
be used as the basis for adaptive monitoring (Chen, 2009). This
approach is well suited to address monitoring problems because:
(1) The AIS-based systems are autonomous. The AIS-based systems
can automatically manage monitoring tasks by dynamically
generating and distributing mobile monitoring agents; (2) The
AIS-based systems are adaptive. The adaptive mechanism of the
immune system has great value in monitoring networks.
The selective generation of mobile monitoring agents based on
immune clonal selection is essential for producing large enough
amount of specialized mobile monitoring agents in resource-
constrained sensor networks (Negoita, 2005); (3) The AIS-based
systems are active. The concept of actively dispatching mobile
monitoring agents (mimicking B-cells) helps the distribution of
specialized monitoring agents to the sites where they are needed.
The on-site diagnosis overcomes the delay of system response.
The distributed data fusion reduces the raw data transmission,
which will save the communication bandwidth in wireless
monitoring networks.

To achieve AIS-based monitoring, the desirable immune
attributes and mechanisms need to be embodied into distributed
monitoring systems to provide properties analogous to those
presented in the natural immune system. The idea of
the embodiment of immunology into engineered systems is
shown in Fig. 2, which shows the direct coupling between the
computational system and its environment, and is a rich complex
feedback process (Stepney, 2007). The key characteristics of the
immunology are modeled in mathematical and computational



Fig. 2. Embodiment of immunology into engineered systems.
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models through biological observations and experiments. The
immune-inspired computational systems (and algorithms) based
on these models can be embodied into the engineered systems. To
achieve this embodiment, both computational system and the
engineered system should be open, have sufficient dynamics to be
modified by the other party, and there is high enough interaction
bandwidth between two parties. For the monitoring systems, the
computational system dynamics include the modification of
monitoring agent population and memory cells: number, type,
and location. The engineered system and the environment are
open to the computational system. The monitoring agents
can read real-time sensor data and make decisions accordingly.
The interaction between the computational system and the
engineered system occurs when immune algorithms recognize a
damaged pattern or detect a fault. The computational system can
also modify the engineered systems, for example, fault isolation
and damage alert.
3. Agent-based network framework to enable immune
functions in structural health monitoring networks

The presented AIS-based structural health monitoring network
framework is shown in Fig. 3. A group of mobile software agents
(mimicking immune cells, such as B-cells) equipped with damage
pattern recognition algorithms monitors the health of a structure
by patrolling over a sensor network deployed on the structure.
The ‘‘antibody’’ of a mobile agent is a pattern recognition
algorithm tuned to a certain type of structural damage pattern.
A mobile monitoring agent reads real-time structural data from
sensors and performs damage diagnosis using an equipped
pattern recognition algorithm. Mobile agents can communicate
with each other for group decision making or collaborate with
other network components. A mobile agent system embedded in
sensor nodes supports the generation, migration, communication,
and management of mobile monitoring agents automatically,
with no human interventions are involved. When the antibody of
a mobile monitoring agent recognizes a damage pattern at a
sensor node, the mobile agent communicates with a stationary
agent in the knowledge base. If the damage is confirmed, the
mobile agent is activated. Its antibody will be cloned and mutated
through a clonal selection process. In addition, an alert agent is
generated to inform remote operators. At the same time, mobile
monitoring agents carrying cloned antibodies migrate to the
locations close to the damage site, where they conduct a careful
damage diagnosis. A diagnosis report is sent to the human
operators.
In the following subsections, the components to establish an
artificial immune system-based sensor network framework,
adaptive agent population management, and agent interaction
to mimic immune functions are introduced.

3.1. Basic components of AIS-based monitoring networks

To mimic immune functions, basic components of an
AIS-based monitoring network and the mapping of these
components with the natural immune system are listed in
Table 1. Mobile monitoring agents mimic B-cells in the human
body. Pattern recognition algorithms are antibodies of monitoring
agents. Feature vectors are used to represent antigenic patterns.
A monitoring agent activated by a specific damage pattern will be
cloned to increase the number of special skilled monitoring
agents in the network. The reproduction will be performed with
mutation to increase the diversity of monitoring agents. The
damage detection is performed through mutual and dynamic
interaction among agents and the monitoring network.
The building blocks to realize the AIS-based monitoring
networks include pattern recognition algorithms and feature
representations for each pattern, coordination protocols among
monitoring agents and network components, and adaptive agent
population management.

3.2. Adaptive agent population management

Adaptive agent population management is based on immune
clonal selection principle for controlling the amount and type of
mobile monitoring agents in a network. The clonal expansion,
immune memory, and programmed cell death rates allow the
immune system to dynamically allocate resources as needed in a
distributed environment (Zhong et al., 2006). In the natural
immune system, cells capable of recognizing an antigenic
stimulus will proliferate and differentiate into effecter cells (de
Castro and Timmis, 2002). This adaptive resource management
mechanism is valuable for monitoring sensor networks. The
selective generation of mobile monitoring agents is essential for
producing large enough amount of specialized mobile monitoring
agents in resource-constrained sensor networks (Negoita, 2005).

In the presented system, the agent population control mechan-
ism is shown in Fig. 4. The adaptive management is accomplished by
the collaboration of monitoring agents, knowledge base, and
network components responsible for clonal selection. If a
monitoring agent recognizes its corresponding damage pattern,
coupled with the confirmation signal from the knowledge base, it is



Fig. 3. AIS-based SHM sensor networks (Chen, 2009).

Table 1
Mapping between the immune system and the AIS-based monitoring networks.

Immune system AIS-based monitoring networks

� B-cells

� T-cells

� Antibodies

� Antigens

� Clonal selection

� Immune memory

� Self/nonself discrimination

� Immune network theory

� Mobile monitoring agents

� Knowledge base

� Pattern recognition algorithms

� Data pattern feature vectors

� Clonal selection algorithm

� Memory cell sets

� Negative selection algorithm

� Immune network computational

models
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selected to be cloned. The cloned monitoring agents are divided into
two groups. One group is effecter monitoring agents who are
dispatched to the sensor nodes close to the location where the
damage is detected for further diagnosis. The other group is memory
cells. Agent life is defined by a parameter, lifetime. After creating a
mobile monitoring agent, it is assigned to a specific lifetime value to
control the death of the agent. For memory cells, it will be assigned a
longer lifetime, so it can circulate over the network for a relatively
longer time period. The monitoring agents that are not activated
within its lifetime will die to allow monitoring networks generating
other types of monitoring agents for exploring a diverse range of
damages.

3.3. Mimic immune functions through agent interaction

Agent technology is promising in performing complex tasks
since it facilitates collaboration among a group of agents and the
service providers in the networks. Agent collaboration is achieved
through agent communication. Certain message sequences in-
volved in agent conversation often fall into typical patterns. These
typical patterns of message exchange are called interaction
protocols. To promote interoperability, agent interaction proto-
cols in the presented AIS-based monitoring networks are designed
based on the Foundation for Intelligent Physical Agents (FIPA)
agent interaction protocols. This section illustrates several key
scenarios involved in mimicking artificial immune functions in
monitoring networks and the required interaction of the agents in
each of these scenarios.

Fig. 5 shows the interaction protocol of activating a mobile
monitoring agent. The mobile agent is an initiator; and the
knowledge based agent and clonal selection agent are participants
in this interaction protocol. A knowledge base is used to keep feature
vectors of self and nonself. It also maintains historical data for
regenerating pattern representatives. A stationary agent resides in
the knowledge base to communicate with mobile monitoring agents
in the network and handle requested services. The clonal selection
agent performs selective generation of monitoring agents based on
the clonal selection algorithm inspired by the immune system.
When a monitoring agent detects a certain type of damage in a
sensor node, following sequence of agent interaction occurs to
activate the monitoring agent. (1) The monitoring agent requests the
confirmation of damage by sending a ‘‘request’’ message to the
knowledge based agent. The content of the message includes a
description of the requested action and the damage feature vectors
calculated by sensor data. (2) The knowledge base agent processes
the request and makes a decision whether to accept or refuse the
request. If an agree decision is made, the knowledge base agent
sends an agree message to the monitoring agent, otherwise, a refuse
message. (3) When the knowledge base agent successfully
completes the request, it will notify the monitoring agent of the
results. (4) The knowledge base agent will also send a ‘‘request
when’’ message to the clonal selection agent to confirm the damage
detected by the monitoring agent. (5) When the damage is
confirmed by the knowledge base agent, the monitoring agent
requests cloning it by sending a ‘‘request’’ message to the clonal
selection agent. (6) If the clonal selection agent agrees to clone the
monitoring agent, it will send an agree message to the monitoring
agent (7) and the knowledge base agent. (8) When the clonal
selection agent completes the agent clone, it will also send an inform
message to the monitoring agent (9) and the knowledge base agent.

Fig. 6 illustrates the interaction protocol for a group of
monitoring agents performing damage diagnosis. This interaction
protocol is based on the FIPA recruiting interaction protocol.
The initiator is the mobile monitoring agent who detects damage,
while the knowledge base agent acts as the recruiter. When the
monitoring agent is informed by the clonal selection agent about
the completion of agent clone, it will organize a mediated group
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damage diagnosis. The monitoring agent begins recruiting
interaction by sending a proxy message to the knowledge based
agent. The proxy message contains: a referential expression
denoting the target agents to which the recruiter should forward
the communicative act, the communicative act to forward and a set
of proxy conditions such as the maximum number of agents to be
forwarded. The knowledge base agent processes the request and
makes a decision whether to agree to or refuse the request, and



Fig. 6. The interaction protocol of group damage diagnosis.
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communicates either agree or refuse communicative act
accordingly. Once the recruiter has agreed to be a proxy, it locates
agents as per the description from the proxy message. If no such
agents can be found, the recruiter returns a failure-no-match and the
interaction terminates. Otherwise, the recruiter interacts with the
matching agents with sub-protocol embedded in the proxy message,
request damage diagnosis. The diagnosis results from recruited
agents can either be forwarded to the original requester or to a
designated receiver. If the recruiter has been given a separate
designated receiver from the initiator, the replies of the sub-protocol
will be sent to the designated receiver, otherwise to the initiator.

4. Artificial immune pattern recognition

One of the most appealing characteristics of the immune
system is its immune cells (such as B-cells) carrying surface
receptors that are able to recognize and bind antigens. This
section introduces Structural Damage Classification (SDC) based
on Artificial Immune Pattern Recognition (AIPR) approach (Chen
and Zang, 2009). The classification algorithm is designed using
concepts derived from the natural immune system. The immune
pattern recognition method achieves pattern recognition by
establishing memory cell sets; each set is responsible for
recognizing one type of pattern. Memory cells are feature vectors
of recognizing data pattern. The AIPR-SDC algorithm consists of
two major stages. The first stage is the feature extraction from
structural dynamic response data. In this stage, all the training
data (sensor data) need to be standardized and the feature vectors
need to be generated. In addition, memory cell set and antibody
set for all the patterns are initialized. In the second stage, training
antigens stimulate the antibody set and thus causes some of
antibodies to produce clones. The cloned antibodies are mutated
to increase the diversity of the antibody set. The antibody having
the highest affinity with the stimulating antigen is chosen as a
candidate memory cell for updating memory cell set.
4.1. Feature extraction

The structural damage patterns are represented by feature
vectors extracted from the dynamic response data of a structure.
The feature vector of a time series is formed by coefficients of an
autoregressive (AR) model of the time series. To reduce environ-
mental effects, the measurement data Z are standardized by
yij¼zij�mi/si j¼1,2,y,n, where mi and si are the mean and
standard deviation of the time series z

,

i. To extract feature vectors
for a local area, time series measurement data sets from multiple
sensors are reduced to lower dimensions by the principal
component analysis method. The compressed time series x is
then fitted to an AR model of order p as shown in Eq. (1):

xk ¼
Xp

i ¼ 1

aixk�iþrk k¼ pþ1, � � � � � � ,n ð1Þ

where ai, i¼1,2,...,p are the coefficients of the AR model. The
vector a¼ ða1,a2, � � � ,apÞ

T , a collection of the AR coefficients, is
selected as the feature vector of the measurement data Z. The
effectiveness of the AR-model-based feature vectors is tested
using experimental data of a benchmark structure proposed by
the American Society of Civil Engineers (ASCE). The acceleration
signals of the five data patterns of the benchmark structure are
shown in Fig. 7. The feature vectors of the corresponding data
patterns projected to the first two principle components are
shown in Fig. 8. The memory cells generated by the AIPR method
for these five data patterns are shown in Fig. 9. The detailed
introduction of the memory cell generation is given in the
following section.

4.2. Memory cell generation

The process of the memory cell generation includes two sub-
processes: the evolution of the antibody set and the update of the
memory cell set. The flow chart of the memory cell generation is



0 0.2 0.4 0.6 0.8

x 10-4

0 0.2 0.4 0.6 0.8

x 10-4

0 0.2 0.4 0.6 0.8

x 10-3

0 0.2 0.4 0.6 0.8

x 10-4

0 0.2 0.4 0.6 0.8

-10

-6

-10.2

-9.4

-1.1

-1

-10

-5

1.5

3.5
x 10-4

Time (s)

A
m

pl
itu

de
 (m

/s
2 )

Normal

Damage 1 

Damage 2 

Damage 3 

Damage 4 

Fig. 7. Acceleration signals of the ASCE benchmark structure.

-2.5 -2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1

1.5

First component of feature vector

S
ec

on
d 

co
m

po
ne

nt
 o

f f
ea

tu
re

 v
ec

to
r

Normal
Damage 1
Damage 2
Damage 3
Damage 4

Fig. 8. Feature vectors of the experimental data of the ASCE structure.

-2.5 -2 -1.5 -1 -0.5 0
-1

-0.5

0

0.5

1

1.5

First component of feature vector

S
ec

on
d 

co
m

po
ne

nt
 o

f f
ea

tu
re

 v
ec

to
r

Normal
Damage 1
Damage 2
Damage 3
Damage 4

Fig. 9. Memory cells for the five data patterns of the ASCE structure.

B. Chen / Journal of Network and Computer Applications 33 (2010) 633–645 639
shown in Fig. 10. The training feature vectors are used to
stimulate this process.
4.2.1. Evolution of the antibody set using antigenic stimulation

The initial antibody set is generated by the random selection of
antibodies from the training data. The stimulation of the antibody
set by an invading antigen (a training data) will cause the
evolution of the antibody set. The description of the antibody set
evolution algorithm is given in Fig. 11. For a training antigen ag,
the affinity between the antigen and each antibody ab that is in
the same class (pattern) as the antigen is calculated. Let
ab:f ¼ b¼ ðb1,b2, � � � ,bpÞ

T and ag:f ¼ g¼ ðg1,g2, � � � ,gpÞ
T denote the

feature vectors of an antibody ab and the antigen ag, respectively.
The affinity between an antibody and the antigen is defined as

aff ðab,agÞ ¼ 1�
1

2
distðb,gÞ ð2Þ

where dist(b,g) is the Euclidian distance between the feature
vectors of b and g. The probability that an antibody ab is cloned
depends on its affinity with the antigen. The number of the cloned
antibodies, CloneNumber, depends on the Clonal Rate (CR) and the
Clonal Value (CV). The CR is an integer value used to control
the number of antibody clones allowed for the activated B-cell.
The CV is a value that measures the response of a B-cell to an
antigen. According to the natural immune system, the higher the
affinity, the larger the number of antibodies is cloned. We choose
the clonal value being equal to the affinity value. The CloneNumber

is then calculated using

CloneNumber¼ roundðCR� CVÞ ¼ round CR� aff ðab,agÞð Þ ð3Þ

where round(U) is an operator that rounds its value to the closest
integer. The cloned antibodies undergo a maturation process that
increases the diversity of the antibody set. The mutation is
performed by mutating the feature vectors of the cloned
antibodies as shown in Eq. (4)

abmutatedUf ¼ abUf þMV �f ð4Þ

where abmutated is the mutated antibody and MV is the Mutation
Value (MV). Typically, the higher the affinity is, the smaller the
mutation value. In our design, the mutation value MV is defined
as MV¼1�CV. In Eq. (4), the vector f¼ ðf1,f2, � � � ,fpÞ

T is a
random vector whose dimension is the same as that of the feature
vector. Each element fi is defined by fi�N(0,s2), where N(0,s2) is
a normal random variable with the standard deviation of s.

The mutated antibodies are added into the antibody subset to
which the ag belongs. The resulting antibody subset is sorted in a
descending order according to the affinity values of the antibodies
with the given antigen. The top MaxABN number of antibodies is
selected to form the evolved antibody set. The rest of antibodies
are discarded. The antibody with the highest affinity is chosen as
the candidate memory cell MCcandidate for the updating of memory
cell set.

4.2.2. Update memory cell set

The candidate memory cell generated in the antibody set
evolution process is used to update the memory cell set to
enhance the representative quality of memory cells for each
pattern. The description of the memory cell set update algorithm
is given in Fig. 12. The memory cell update occurs in the following



Fig. 10. Memory cell generation.

Begin
    Input an antigen ag; 

While  (there is more antibody ab  which is in the same class as ag) do   
        Clone antibody ab based on the affinity with the ag;  
        Mutate the cloned antibodies; 
        Keep the mutated antibodies staying within the unit hyper-sphere; 
        Form a new antibody set using top MaxABN  number of antibodies;  

End while 
    Select the highest affinity antibody as the candidate memory cell; 
End

Fig. 11. The description of the antibody set evolution algorithm.

Fig. 12. The description of the memory cell set update algorithm.
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scenarios. First, when the root mean square distance, rms,
between the candidate memory cell and the memory cells in
the same class is greater than a specified threshold value Memory
Cell Injection Threshold (MCIT), the candidate memory cell is
injected into this class of memory cells. Let ag.c denote the class
label of the antigen ag, let MCSag.c denote the memory cell subset
with the same class as the given antigen ag, and let 9MCSag.c9
denote the total number of the memory cells in the subset MCSag.c.
The rms is defined by

rms¼ RMSðdist1,dist2,. . .dist MCSag:cj jÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCSag:c

�� ��q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XMCSag:cj j

i ¼ 1

dist2
i

vuut

ð5Þ

where disti¼dist(mci,MCcandidate), mciAMCSag.c, and i¼1,2,y,
9MCSag.c9. If the rms is greater than the MCIT, the candidate
memory cell is added into the memory cell subset MCSag.c.

In the second case (the rms is less than or equal to MCIT), the
candidate memory cell compares with the matched memory cell.
The matched memory cell is the memory cell that has the highest
affinity with the given antigen in the same class, which is denoted
by MCmatched. When the affinity between MCcandidate and the given
antigen ag is greater than the affinity between MCmatched and
antigen ag, the candidate memory cell replaces the matched
memory cell if the affinity between MCcandidate and MCmatched is
greater than the Memory Cell Replacement Threshold (MCRT),
otherwise the candidate memory cell is added into the memory
cell subset MCSag.c. The memory cells for the five data patterns of
the benchmark structure are shown in Fig. 9. For classifying a
damage-pattern-unknown time series, the affinities between the
feature vector of the time series and memory cells are calculated.
The pattern of the time series is classified to the same pattern
as the memory cell with which the time series has highest
affinity.
5. Structural damage detection using AIPR method and
mobile monitoring agents

To validate the presented AIPR approach using mobile agents, a
mobile-agent-based middleware has been embedded into a high
computational power sensor unit as discussed below.

5.1. High computational power sensor nodes

To achieve distributed damage diagnosis, sensor nodes are
designed to possess high computational capabilities (Chen and
Tomizuka, 2008). The high computational power sensor node
consists of three boards as shown in Fig. 13. A sensor board sits at
the bottom, a finger size embedded computer called Gumstix in
the middle, and a WiFi transmission board at the top. The volume
of the sensor node is about 4 in�2.4 in�0.65 in. The sensor
board was designed and fabricated by our research group to meet
the structural health monitoring sensing requirement. We employ
multi-modal sensing approach and incorporate active sensing



Fig. 13. A high computational power sensor node.

Fig. 14. Mobile-C integrated into sensor nodes.
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with passive sensing to achieve a better monitoring result.
The sensor board connects to a number of sensors, including
accelerometers, strain gauges, humidity and temperature sensors,
and piezoelectric transducers.

A numerical library module is implemented in the Gumstix-
based sensor nodes. The numerical library module provides
computational building blocks to construct SHM analysis
methods. It contains a C version of Linear Algebra PACKage
(LAPACK) library and a utility function library. The C version of
LAPACK library provides routines for solving systems of linear
equations, linear least-squares problems, eigenvalue problems,
and singular value problems (Anderson et al., 1999). It also
handles matrix factorizations and estimates condition numbers,
such as Cholesky decomposition, singular value decomposition,
and Schur decomposition. The utility functions in the utility
function library are designed to perform a certain subtask of SHM
analysis or common computation that is not available in LAPACK
library, for example, Fast Fourier Transform. The existing open
source numeric libraries such as Numerical Recipes in C (Press
et al., 1992) and the GNU Scientific Library can be used to
implement these utility functions. The Numerical Recipes in C and
the GNU Scientific Library provide a wide range of mathematical
routines, such as random number generators, special functions
and least-squares fitting, Eigensystems, Fast Fourier Transforms,
and Statistics. Using these legacy programs promotes software
reuse and will significantly reduce the development effort for
SHM. The numerical accuracy of these open source libraries is
comparable with commercial software packages, such as Matlab.
5.2. Mobile-agent-based sensor network middleware

A mobile agent is a software agent that is capable of migrating
from one host to another in a network and resumes the execution
in the new host. The migration and execution of mobile agents are
supported by a mobile agent system. In previous studies, Chen
et al. (2006) have developed a mobile agent system called
Mobile-C. To build an AIS-based sensor network, Mobile-C has
been integrated with developed sensor nodes as shown in Fig. 14.
Mobile-C in sensor nodes can host both stationary agents and
mobile agents. Stationary agents are those staying in the sensor
nodes where they are created, such as data acquisition agent,
knowledge base agent, and clonal selection agent. Mobile agents
are those created during the system operation for monitoring
purpose.

In a mobile-agent-based sensor network, a remote user can
dispatch mobile agents to sensor nodes in the network. Different
types of mobile agents could be created and dispatched to sensor
nodes as needed. For example, the remote operators could
dispatch mobile alert agents to sensor nodes for monitoring
specified events. Data analysis and damage diagnosis mobile
agents with certain expertise (equipped with different data
analysis and damage diagnosis algorithms) can roam over the
network to perform distributed monitoring tasks. Mobile agents
carrying code and execution states move from one sensor node to
another, read sensing data from sensors, perform damage
diagnosis on the sensor nodes where they reside, and send
diagnosis results back to the remote operators. Each agent has its
own identification number that is assigned to the agent when it is
created. This number will accompany with the agent for the entire
life of the agent. Agent migration is achieved through message
passing. When a mobile agent is dispatched, information related
to the agent such as agent ID, agent itinerary, tasks to be
performed, and agent code for each task, is encapsulated into the
mobile agent message. The intermediate results from each task
will be added into the mobile agent message when the agent
travels. Finally, the mobile agent will send all the results back to
the dispatcher.

5.3. Scaled steel bridge test

AIPR-based damage pattern recognition was tested on a scaled
steel bridge as shown in Fig. 15. During test, the bridge was
excited by a shake in vertical direction. The excitation signals of
the shaker were generated by Siglab and virtual instruments.
Siglab system is integrated with Matlab. Virtual instruments
running in the Matlab include classes of network analyzer,
function generator, spectrum analyzer, and oscilloscope. For the
bridge test, we used the function generator to generate excitation
signals for the shaker and network analyzer to measure the
signals from a force sensor that was attached to the shaker. The
generated shaker excitation signals were amplified by a power
amplifier.

The accelerometers were mounted on the beams along the
bridge. The excitation signals applied to the shaker were sine
waves with a frequency of 10 Hz. Two peak-to-peak voltages of
0.275 and 0.295 V were applied to the shaker to simulate different
levels of acceleration. Structural damage was simulated by
removing one cross member at the center of the bridge. The
snapshots of normal and damaged acceleration signals are
illustrated in Fig. 16. The amplitude of the acceleration signals
of the damaged pattern is larger comparing to the normal
acceleration signals. To generate memory cells for the normal
and damaged pattern, acceleration signals for both patterns were
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recorded. The sampling rate of accelerometers was 125 sps.
Each acceleration data file contains 7500 data points. Twelve
data files for each pattern at different excitation levels were used
to generate training feature vectors. In each data file, five 2000-
point time series were formed starting from the 1000th data point
and advancing 1000 points each time. These training feature
vectors were used to generate the memory cells for normal and
damaged patterns using the AIPR method described in Section 4.
The generated memory cells are shown in Fig. 17.

For detecting structural damage in remote sensor nodes, a user
sends mobile monitoring agent 1 from a laptop to sensor node 1.
The task of the mobile monitoring agent is to diagnose structural
damage based on the acceleration data collected by the sensor
node. The mobile agent message represented in Extensible
Markup Language (XML) format is shown in Fig. 18. A mobile
agent message contains general information of a mobile agent and
tasks that the mobile agent is going to perform on destination
hosts. The general information of a mobile agent includes agent
Fig. 15. A scaled steel bridge structure.

0 0.2 0.4 0.6

x 104

A
m

pl
itu

de

N

0 0.2 0.4 0.6

1.44

1.45

1.46

1.47

1.48

1.49

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5
x 104 Da

Ti

A
m

pl
itu

de

Fig. 16. Acceleration signals for n
name, agent owner, and the home of the agent. Task information
includes number of tasks, a task progress pointer, and the
definition for each task such as the hosts to perform tasks,
return variables, and the agent code for each task.

Mobile agent code is a regular C program. In this example,
mobile monitoring agent 1 reads the acceleration data on the
sensor node 1 and builds an AR model for the sensor data. Based
on the AR coefficients, the feature vector of the sensor data is
formed, and the Euclidean distances from this feature vector to
the memory cells are calculated. The k-Nearest Neighbor (kNN)
algorithm is used to detect if damage is presented in the structure.
For a given feature vector x, the nearest neighbor rule is
summarized as follows (Theodoridis and Koutroumbas, 2008).
(1) Out of the N training vectors, identify the k nearest neighbors
to the vector x. The number of k is general not to be a multiple
of the number of classes M. (2) Out of these k samples,
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Fig. 18. Mobile monitoring agent message represented in XML format.
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identify the number of vectors, ki, that belong to class oi,
i¼ 1,2, � � � � � � ,M,

P
iki ¼ k. (3) Assign x to the class oi with the

maximum number ki of samples. In our two classes example, the
value of M is 2 and the number of k is chosen to be 9. Among 9
smallest Euclidean distances, if the majority (44) of them are
distances from the sensor feature vector to the damaged memory
cells, the sensor feature vector is classified to the damaged
pattern. As a result, structural damage is detected. Otherwise, the
structure is in the normal pattern.

Fig. 19 is the screenshot of the output of the mobile agent 1 at
the sensor node 1 in the simulated damage pattern. The name of
the embedded computer at sensor node 1 is gumstix 2. Each
Gumstix board runs mobile agent server program waiting for
mobile monitoring agents. When the mobile monitoring agent 1
arrives at the sensor node 1, it calculates the AR coefficients for
the acceleration data. The calculated AR coefficients are displayed
on a secure shell connected to the embedded computer, gumstix
2, on the sensor node 1 as shown in Fig. 19. The sensor data
feature vector is formed using these coefficients, and the
Euclidean distances from this feature vector to the memory cells
are computed. The 9 smallest Euclidean distances are displayed
on the gumstix 2 terminal in Fig. 19. All the 9 distances are from
the sensor data feature vector to the memory cells in the damaged
memory cell group. As a result, the structure pattern is classified
as damaged pattern.

To test the performance of the presented mobile monitoring
agent-based AIPR method, a number of tests at different
excitation voltage levels and different patterns are conducted.
The test results are summarized in Table 2. In the normal pattern,
128 tests and 119 tests are performed at the 0.275 and 0.295 V
excitation voltage, respectively. All the test results show the
normal pattern of the structure. The success rates are 100% in the
normal pattern. In the damaged pattern, 143 tests and 140 tests
are conducted at the 0.275 and 0.295 V excitation voltage,
respectively. At the 0.275 V excitation level, 119 tests out of 143
tests classify the structure to the damaged pattern. At the 0.295 V
excitation level, 133 tests out of 140 tests classify the structure to
the damaged pattern. The success rates in the damaged pattern
are 83.2% and 95% for the 0.275 and 0.295 V excitation voltage,
respectively.
6. Conclusions

An artificial-immune-system-based network framework for
adaptive monitoring is presented in this paper. The presented
network framework transforms immune concepts and operating
principles into computational models and embeds these compu-
tational models into engineered monitoring networks. The
immune cells are mimicked by the mobile monitoring agents
and the adaptive immune responses are simulated by the agent
interaction and collaboration. The presented immune-inspired
monitoring paradigm has been applied to the structural health
monitoring networks. The adaptive structural health monitoring
is achieved through the integration of high computational power
sensor nodes, a mobile-agent-based sensor network middleware,
and the AIPR-based structural damage pattern recognition. An
embeddable mobile-agent-based sensor network middleware
manages the generation, maturation, and distribution of mobile
monitoring agents automatically. The mobile monitoring agents



Fig. 19. The output of the mobile agent 1 on sensor node 1 in the simulated damage case.

Table 2
Mobile monitoring agent-based AIPR test results.

Excitation Voltage (V) Normal Pattern Damaged Pattern

Number of tests Number of Normal Patterns Success rate (%) Number of tests Damage Detected Success rate (%)

0.275 128 128 100 143 119 83.2

0.295 119 119 100 140 133 95
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and the AIPR-based structural damage diagnosis have been tested
in a scaled bridge structure. The mobile monitoring agent was
able to recognize structural damage pattern using real-time
structural acceleration signals.
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