
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1364–1376
XML-based agent communication, migration and computation
in mobile agent systems

Bo Chen a,1, David D. Linz b, Harry H. Cheng b,*

a Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States
b Integration Engineering Laboratory, Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616, United States

Received 17 November 2006; received in revised form 24 October 2007; accepted 27 October 2007
Available online 12 November 2007
Abstract

This article presents the research work that exploits using XML (Extensible Markup Language) to represent different types of infor-
mation in mobile agent systems, including agent communication messages, mobile agent messages, and other system information. The
goal of the research is to build a programmable information base in mobile agent systems through XML representations. The research
not only studies using XML in binary agent system space such as representing agent communication messages and mobile agent mes-
sages, but also explores interpretive XML data processing to avoid the need of an interface layer between script mobile agents and system
data represented in XML. These XML-based information representations have been implemented in Mobile-C, a FIPA (The Foundation
for Intelligent Physical Agents) compliant mobile agent platform. Mobile-C uses FIPA ACL (Agent Communication Language)
messages for both inter-agent communication and inter-platform migration. Using FIPA ACL messages for agent migration in FIPA
compliant agent systems simplifies agent platform, reduces development effort, and easily achieves inter-platform migration through
well-designed communication mechanisms provided in the system. The ability of interpretive XML data processing allows mobile agents
in Mobile-C directly accessing XML data information without the need of an extra interface layer.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Mobile agents; Agent communication; Mobility; XML
1. Introduction

Mobile agent technology is promising for many applica-
tions (Lange and Oshima, 1999), where mobile agents roam
over the network accessing distributed resources and coop-
erating with other agents or non-agent components during
the course of performing certain tasks. Agent collaboration
is important for complex tasks. The intelligence of an agent
system is not only reflected by the expertise of individual
agents but also exhibited by the collaborative behavior of
a group of agents. Cooperation and collaboration of agents
require agents to communicate and interact with each
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.10.026

* Corresponding author. Tel.: +1 530 752 5020; fax: +1 530 752 4158.
E-mail addresses: bochen@mtu.edu (B. Chen), hhcheng@ucdavis.edu

(H.H. Cheng).
1 Tel.: +1 906 487 3537; fax: +1 906 487 2822.
other. The communication and interaction could be intra-
platform or inter-platform. In a heterogeneous network,
an agent may also need to cooperate with agents developed
for different platforms or written in other languages. Fur-
thermore, a group of cooperating agents and their interact-
ing pattern are usually dynamic and are unknown at the
design stage. As a result, an open and flexible communica-
tion and interaction model is needed to ensure the interop-
erability among mobile agents and mobile agent systems.

Agent communication and interaction are achieved
through agent communication mechanisms provided by
agent systems. Agent communication mechanisms vary
considerably from one agent system to another agent sys-
tem. Commonly used communication approaches include
events, remote method invocation, and message passing.
For the remote method invocation, it is usually language
dependent and is commonly used in Java-based agent

mailto:bochen@mtu.edu
mailto:hhcheng@ucdavis.edu

Nomenclature

XML Extensible Markup Language
FIPA The Foundation for Intelligent Physical Agents
ACL Agent Communication Language
SQL Structured Query Language
DTD Document Type Definition
AMS Agent Management System
ASM Agent Security Manager

DF Directory Facilitator
AEE Agent Execution Engine
ACC Agent Communication Channel
ODBC Open Database Connectivity
HTTP Hypertext Transfer Protocol
SDK Software Development Kit
API Application Programming Interface

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1365
systems. Many agent systems employ message passing for
complicated agent communication scenarios. To promote
the interoperation of agents and agent systems across het-
erogeneous agent platforms, FIPA (The Foundation for
Intelligent Physical Agents) (FIPA) has been working on
specifications that range from agent platform architecture
to support inter-agent communication, communication
languages and content languages for expressing exchanging
messages, and interaction protocols that expand the scope
from single messages to complete transactions. Similar to
agent communication mechanisms, agent mobility mecha-
nisms that support agent migration vary in different agent
systems. Although the agent migration through standard
agent messages has been proposed (Ametller et al., 2003),
most systems use customized mechanisms to transport
mobile agents. These customized agent migration mecha-
nisms are usually sophisticated and separated with the
communication mechanisms.

A mobile agent system has different types of informa-
tion, including communication messages, mobile agent
messages, and system data. Using a unified information
representation will definitely simplify agent systems and
reduce development effort. XML (Extensible Markup Lan-
guage) is a standard for building tag-based structured doc-
uments/data. It is a markup language for representing and
exchanging data over the Internet. A number of researchers
had proposed to use XML for encoding ACL (Agent Com-
munication Language) messages (Grosof and Labrou,
1999; Griss, 2001; Leung and Li, 2004), representing docu-
ments, such as business documents (Glushko et al., 1999;
Sedbrook, 2001), course content (Madjarov et al., 2004),
ontology (De Meo et al., 2003), and system parameters
(Mathieu and Verrons, 2003), and performing agent coor-
dination (Cabri et al., 2001). These researches mainly
explore using compiled programs to process XML data.
This article presents an exploration of using XML to rep-
resent different types of information in a mobile agent sys-
tem. The system not only uses XML to represent agent
communication messages and mobile agent messages, and
processes these XML messages in binary agent system
space, but also allows mobile agents to process XML data
interpretively to avoid the need of an interface layer
between script mobile agents and system data represented
in XML. The interpretive XML data processing is achieved
through an interpretive software package Ch XML (Wang
and Cheng, 2006) based on Gnome libxml2 (Libxml2) and
Oracle XDK (Oracle XML Developer’s Kit) for C/C++
(Oracle XML Developer’s Kit).

XML-based agent communication, migration, and com-
putation have been implemented in Mobile-C (Chen et al.,
2004; Chen, 2005; Chen et al., 2006; Mobile-C), a mobile
agent system that is compliant to IEEE FIPA agent stan-
dards. Mobile-C uses IEEE FIPA ACL messages for
inter-agent communication and inter-platform mobile
agent migration. Compliance with a dominant interna-
tional agent standard greatly enhances the openness and
interoperability of Mobile-C. Encoding ACL messages in
XML further increases the flexibility of agent communica-
tion and migration. Mobile agents in Mobile-C are
migrated via FIPA ACL messages. Using FIPA ACL mes-
sages for agent migration in FIPA compliant agent systems
simplifies agent platform since both agent communication
and migration can be achieved through the same communi-
cation mechanism provided in the agent platform.

The rest of the article is organized as follows. Section 2
highlights advantages of using XML to encode communi-
cation and mobile agent messages and represent other
types of data in mobile agent systems. Section 3 shows
two types of messages in Mobile-C, agent communication
messages and mobile agent messages. Section 4 presents
the system architecture and major components of the
Mobile-C, a mobile agent system implementing these
XML representations. Section 5 explains how mobile agent
messages are processed and the life cycle of a mobile agent
is managed in an agent platform. Section 6 gives an exam-
ple of a mobile agent that migrates via mobile agent mes-
sages and processes XML data interpretively in remote
hosts. Section 7 compares processing times for a mobile
agent to process raw data that are stored in data files,
XML files, and SQL (Structured Query Language) dat-
abases. Finally, we draw conclusions in Section 8.
2. Good reasons of exploiting XML in agent systems

Using XML to encode ACL messages and represent
other types of information in agent systems offers a number
of advantages.

1366 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
� Comparing with other encoding formats, such as Lisp-
like encoding and plain ASCII (The American Standard
Code for Information Interchange) text, XML is easy to
generate, parse, edit, and translate because of its strict
and extremely consistent syntax, and a rich set of stan-
dard XML tools available for these purposes.
� XML is a self-describing file format to store structured

information. It allows application developers to define
their own document structure and vocabularies for
describing different format of information. The modifi-
cation of ACL syntax won’t result in re-writing the par-
ser as long as such changes are reflected in the ACL
DTD (Document Type Definition).
� XML documents and parsing standards are open. The

complete specification for XML is available at W3C’s
Web page (World Wide Web). The openness of XML
makes XML document interchangeable, satisfying the
interoperability of a system in which heterogeneous
entities need to interact with each other. XML infor-
mation can be transmitted by any systems capable
of transferring text and move over to systems that
have a mechanism to parse and use XML
information.
� Many agent systems are internet-related and agents are

often applied to Web-based systems. XML is more flex-
ible than HTML (Hypertext Markup Language) and
less complex than SGML (Standard Generalized
Markup Language) (Overview of SGML Resources)
for Web-based applications. Using XML to encode
ACL messages and represent different types of data
Fig. 1. An ACL message
facilitates the practical integration with a variety of
Web technology and leverage Web-based tools and
infrastructure.
� XML’s hierarchical structures are well suited for repre-

senting different types of information in the real world,
such as documents, database, and objects. The ability
of representing different formats of data, including com-
munication messages, agent data, access control poli-
cies, and raw data, allows it to form a uniform
information base. This information base is programma-
ble and easy to be managed either in files or databases.
� XML is platform independent. It is suitable for use in

heterogeneous environments.
3. Messages in Mobile-C

There are two types of messages in Mobile-C. One type
is agent communication messages, and another type is
mobile agent messages. A sample agent communication
message from agent-a to agent-b requesting the travel time
on a highway from city Davis to city Dixon is shown in
Fig. 1. The sample message is represented in XML. In
Fig. 1, the sender and intended recipient of the message
are identified by their agent-identifiers. For the sample
message, the sender and receiver agent names are agent-

a@duck.engr.ucdavis.edu and agent-b@dragon.engr.ucda-
vis.edu, respectively. The sender and receiver agent
addresses are http://duck.engr.ucdavis.edu:5120 and
http://dragon.engr.ucdavis.edu:5120, respectively. The
ontology attribute denotes the ontology(s) used to give a
represented in XML.

http://duck.engr.ucdavis.edu:5120
http://dragon.engr.ucdavis.edu:5120

Fig. 2. A mobile agent message.

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1367
meaning to the symbols in the content expression. The
requested action is specified within the expression tags.
The message requests the travel time from the origin Davis
to the destination Dixon. The interaction protocol is
Request-Interaction-Protocol.

Mobile-C supports weak migration in the current imple-
mentation. The task of a mobile agent is divided into multi-
ple subtasks similar to the approach presented in Chong
et al. (1999). These subtasks can be executed in different
hosts and are listed in a task list. New subtasks can be
added into the list and the task list can be modified dynam-
ically based on the new conditions. The ability to dynami-
cally change the task list significantly improves the
flexibility of a mobile agent. However, once a subtask is
started to execute in a certain host, the mobile agent cannot
move until the termination of the execution. Mobile agent
migration is based on mobile agent messages. A mobile
Agency A

Agent Communication Channel (ACC)

Agent Execution
Engine (AEE)

Agent
Security
Manager
(ASM)

Agent
Management

System
(AMS)

Directory
Facilitator

(DF)

SA MA

Agency N

Fig. 3. The system archi
agent message contains general information of a mobile
agent and tasks that the mobile agent is going to perform
on destination hosts as shown in Fig. 2. The general infor-
mation of a mobile agent includes agent name, agent
owner, and the home agency that creates the mobile agent.
Task information includes number of tasks, a task progress
pointer, description of each task, and the code for each
task. During agent migration, intermediate results from
previous tasks are also capsulated into agent messages.
At the end of migration, all of the results are sent back
to the home agency. The examples of mobile agent mes-
sages will be presented in Section 6.

4. System architecture and major components of Mobile-C

The system architecture of Mobile-C is a peer-to-peer
network architecture as shown in Fig. 3. Agencies are major
Agency B

Agent Communication Channel (ACC)

Agent Execution
Engine (AEE)

Agent
Security
Manager
(ASM)

Agent
Management

System
(AMS)

Directory
Facilitator

(DF)

SA MA

Agency C

tecture of Mobile-C.

1368 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
building blocks of the system and reside in each node of the
network to support stationary and mobile agents at run-
time. They serve as ‘‘home bases” for locating and messag-
ing agents, migrating mobile agents, collecting knowledge
about the group of agents, and providing an environment
in which a mobile agent executes (Griss, 2001). The core
of the agency is the agent platform, which provides local ser-
vice for agents and proxies to access remote agencies. The
main components of an agent platform include Agent Man-
agement System (AMS), Agent Security Manager (ASM),
Directory Facilitator (DF), Agent Execution Engine
(AEE), and Agent Communication Channel (ACC). The
AMS manages the life cycle of the agents. It controls crea-
tion, registration, migration, and persistence of agents.
The ASM is responsible for maintaining security policies
for the platform and infrastructure, such as communication
and transport-level security. The DF serves yellow page ser-
vices. Agents in the system can register their services with
DF for providing to the community. They can also look
up required services with DF. The AEE serves as the execu-
tion environment for mobile agents. Mobile agents must
reside inside an engine to execute. The ACC routes messages
between local and remote entities, realizing messages using
an agent communication language.

An agency is a main program running on each node in a
network. When the execution of an agency is started, the
agency initializes the system and creates threads for all of
the components in the agent platform. After initializing sys-
tem, the agency waits for defined events. When an agency
receives a request to run a mobile agent, it creates a new
thread and embeds an Embeddable C/C++ Interpreter –
Ch (Cheng, 1993; Ch – An Embeddable C/C++ Inter-
preter) into the thread for executing mobile agent code.
After the mobile agent migrates to the other hosts, this
thread is terminated automatically. If an agency receives a
system termination request, it terminates the execution of
agent platform and the system itself. In the current imple-
mentation, each mobile agent runs in an embeddable Ch
inside its own thread. The multi-thread approach is much
more efficient than multi-process approach because start-
up and termination of multi-processes and expensive
Inter-Process Communication are avoided.

As previously described, an agent platform is the core of
an agency. The agent platform is also a multi-thread pro-
gram. Each component of an agent platform works in an
individual thread, which ensures that all of the components
can work concurrently. The AMS is responsible for manag-
ing agents. All of the registered agents are recorded in an
agent list. Each node of the agent list contains information
for an agent, such as agent type, agent identifier for a sta-
tionary agent, and data state and code for a mobile agent.
The AMS is also responsible for accepting and dispatching
mobile agents, including creating a mobile agent from a
mobile agent message, requesting for executing and sus-
pending the execution of a mobile agent, and generating
a mobile agent message from a mobile agent structure.
The DF manages all of the registered agent services. To
speed up searching a requested service, a Service Hash
Table and two types of linked lists are designed to record
available agent services.

The AEE is a critical component in a mobile agent sys-
tem. Mobile-C chooses C/C++ as a mobile agent language
and uses an Embeddable C/C++ interpreter – Ch (Cheng,
1993; Ch – An Embeddable C/C++ Interpreter) as an
AEE. Using Ch as an embedded runtime scripting environ-
ment in a mobile agent system has many advantages over
other alternatives. First, all of the C functions can readily
be used in mobile agent scripts. Second, if the agent system
programs are written in C, the communication (including
data sharing) between mobile agents and system programs
is much easier to achieve than other scripting languages.
Third, as a superset of C, Ch supports many standards
and libraries, such as CGI (Common Gateway Interface),
XML (Ch XML Package for Libxml2), ODBC (Open
Database Connectivity), GTK+ (The GIMP Toolkit),
OpenGL (Open Graphics Library) (Chen and Cheng,
2005), and OpenCV (Yu et al., 2004), an open source com-
puter vision library. An increasing number of toolkits and
packages, such as Control Systems Toolkit (Yu et al.,
2004), and Mechanism Toolkit (Cheng and Trang, 2006)
are available for solving complicated engineering problems.
Finally, Ch supports most existing platforms, such as Win-
dows, Linux, Solaris, HP-UX, Mac OS, FreeBSD, and
QNX. It is suitable for use in a heterogeneous network.
Each mobile agent is interpreted inside an interpreter,
which is embedded into the system as a separate thread.
The agent platform mediates mobile agents to communi-
cate with other agents or access the host system.

The ACC facilitates the remote horizontal communica-
tion via ACL messages, such as remote agent-to-agent com-
munication and agent platform to agent platform
communication. The ACC consists of three modules that
are running in three threads, a listening thread, a connecting
thread, and an ACC processing thread. The listening thread
is used to listen for client connections, and the connecting
thread is responsible for connecting to other hosts. The
ACC processing thread processes linked lists of client con-
nections and requests for connecting remote hosts. Remote
horizontal communication in Mobile-C is implemented on
top of TCP/IP. The transport protocol uses HTTP (Hyper-
text Transfer Protocol). Messages are asynchronously sent
to a recipient agent identified by its global unique identifier.
The local agent-to-agent platform information exchange is
achieved by Ch SDK (Software Development Kit) and
Embedded Ch SDK (Ch – An Embeddable C/C++ Inter-
preter), an interface between agent platform space (binary
C/C++ space) and mobile agent space (Ch space).

Each agency in Mobile-C is expected to be able to com-
municate with multiple agencies concurrently and act as a
server and a client at the same time in the communication.
Two data objects, Server Connection List and Client Con-
nection List shown in Fig. 4, are designed to record the cli-
ent connection requests from other agencies and local
requests to connect to remote agencies. These two objects

Client connection list

Incoming message queue

Message structure

Connection structure

Agent structure

AMS

Server connection list

Listening module

Connecting module

ACC processing module

ACC

Outgoing message queue

Agent list

Fig. 4. Data objects related to agent messages.

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1369
are managed by Listening Module, Connecting Module,
and ACC Processing Module in the ACC object. Each
node of these two objects is built on a Connection Struc-
ture, which records the socket connection information.
There are two threads accessing each of these two lists. Lis-
tening thread and ACC processing thread access Server
Connection List, while connecting thread and ACC pro-
cessing thread access Client Connection List. Since each
connection list is accessed by two threads, a mutex is used
to control the accessing of each list. A ‘‘mutex” is a pro-
gram object that allows multiple threads to share the same
resource (the Server Connection List or the Client Connec-
tion List in this application), but not simultaneously. When
an agency program is started, a ‘‘mutex” is created with a
unique name for each list. After that, any thread that needs
the resource must lock the ‘‘mutex” from other threads
while it is using the resource. The ‘‘mutex” is set to unlock
when the resource is no longer needed or the routine is fin-
ished. ACC Processing Module processes Server Connec-
tion List and adds the ACL messages into the Incoming
Message Queue. Similarly, messages in the Outgoing Mes-
sage Queue are delivered to the remote agencies by ACC.

A mobile agent message in the Incoming Message Queue
is processed by AMS to create a mobile agent structure and
initiate a mobile agent. Also, when a mobile agent wants to
migrate to a remote agency, AMS wraps mobile agent code
and state, constructs a mobile agent message, and adds the
mobile agent message to the Outgoing Message Queue.

5. Mobile agent message processing and life cycle
management

Mobile agent migration in Mobile-C is accomplished
through mobile agent messages. When a mobile agent
migrates to a remote host, it goes through three stages as
shown in Fig. 5. In the first stage, a received mobile agent
message is added into an Incoming Message Queue by
ACC. Because the message type is MOBILE_AGENT,
AMS creates an instance of mobile agent structure, initial-
izes the mobile agent structure according to the informa-
tion contained in the mobile agent message, and then
adds this newly created mobile agent (represented by a
mobile agent structure) to a mobile agent list. A mobile
agent structure contains agent’s general information, task
information, and a task progress pointer. Multiple tasks
are represented by an array of task structures. Since
Embedded Ch can execute small-size mobile code stored
in a buffer, the mobile agent code in a mobile agent mes-
sage does not have to be saved into a file. This feature sig-
nificantly speeds up mobile agent execution because
creating a file and running the code from a file is time
consuming.

In the second stage, a mobile agent physically resides on
an agent platform and managed by the agent platform
according to the FIPA agent life cycle model (FIPA).
When a mobile agent is about to migrate to a remote
agency, the mobile agent goes into the third stage. AMS
wraps the agent data state, results from previous tasks,
and mobile agent code to a XML file and reconstructs a
mobile agent message for transmitting. Once a mobile
agent message is created, AMS adds this message into the
Outgoing Message Queue. Finally, the mobile agent mes-
sage is sent to a remote agency by ACC.

In Mobile-C, mobile agent data and code are repre-
sented as sub-nodes of a mobile agent message as shown
in Fig. 2. According to FIPA specifications, mobile agent
messages are delivered in a transport-message format. A
transport-message consists of a payload and an envelope.
The envelope includes the sender and receiver transport-
descriptions, and the payload encodes a message. When a
mobile agent transport-message is sent to a remote host,
i.e., a mobile agent migrates to a remote host, the agent
platform on the remote host saves the payload of the trans-
port-message in a memory block. The process of creating a
mobile agent structure and saving mobile agent code from
the message payload is illustrated in Fig. 6. First, an XML
Parser creates an XML Document Tree from an XML in
memory document. Second, an XML processing module
transforms agent data state node and code node in the
XML Document Tree into manageable data. The extracted

Incoming

message

queue

Mobile

agent

list

Outgoing

message

queue

ACC AMS AMS ACC

Received
messages

Messages
with type
mobile agent

Create mobile
agents and add
to mobile
agent list Migration is

accepted by
remote host

Create a message
to wrap a
mobile agent

Deliver to
remote host

Suspended

Active

Initiated

Waiting

Transit

Wait

Wake Up

Move

Execute

Invoke

Suspend

ResumeFIPA agent life cycle

Mobile agents in the
mobile agent list are
in the “Initiated” state

Destroy

Quit
Unknown

Fig. 5. Mobile agent message processing and life cycle control.

Mobile
agent

transport
message

XML
document

tree

An XML ACL
message

XML tree
Parsed

XML data

Payload
(an XML

in-memory
block)

Agent data
structure

XML
processing

module

XML
parser
APITransport

message

Agent
code

Fig. 6. Parsing mobile agent data and code from a mobile agent message.

1370 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
agent data are used to create a mobile agent structure.
Agent code can either be saved to a buffer or a file based
on its size.

We use libxml2 (Libxml2), a C language library, for
reading, creating and manipulating XML data. Libxml2
is a XML C parser and toolkit developed for the Gnome
project but usable outside of the Gnome platform. It is
open source and portable across a large number of plat-
forms. The main reasons that we chose libxml2 are:

� Libxml2 is written in C. It is easy to embed into our
system.
� Libxml2 works on Linux/Unix/Windows and a number
of other platforms. It is suitable for use in a heteroge-
neous network system.
� Libxml2 can do DTD validation at parse time, using a

parsed document instance, or with an arbitrary DTD.
� Basic support for HTTP and FTP (File Transfer Proto-

col) client allowing applications to fetch remote
resources.
� Libxml2 implements a number of existing standards

related to markup languages, such as XPath, XPointer
and XInclude. The internal document representation is
as close as possible to the DOM (Document Object

XML
document

tree

Payload
(an XML

in-memory
block)

Agent data
structure

XML
document
composing

module

XML
document

dump
APIAgent

code

Fig. 7. Composing a mobile agent message from the mobile agent structure.

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1371
Model) interfaces. It also has a SAX (Simple API for
XML) like interface. The wide range support of XML
related standards and interfaces allows systems be
extended with additional capabilities for different
applications.

Libxml2 has a set of routines and structures for manip-
ulating an XML tree in memory. When a mobile agent
transport-message is sent to a new host, the payload of
the message that is encoded in XML and contains the data
state and code of a mobile agent is stored in memory. In
order to retrieve mobile agent data state and code, we
use parser API (Application Programming Interface) to
parse this XML in memory block and build a correspond-
ing XML document tree. After we create a XML document
tree, the XML processing module traverses all the child
nodes of the root node in the resulting document tree
and extracts mobile agent data state and code for generat-
ing a mobile agent structure and saving mobile agent code
to a memory block or a file. The implementation of XML
processing module is based on libxml2 tree interface for
tree manipulation.

The reverse process occurs when a mobile agent is about
to migrate to a new host. The XML Document Composing
Module creates an XML document tree according to the
mobile agent data structure and mobile agent code. And
then, the resulting XML document tree is dumped into
Fig. 8. The content of the mobile agent me
memory for constructing a mobile agent message as shown
in Fig. 7.

6. An example of a mobile agent visiting remote hosts and

processing XML data interpretively on remote hosts

One of the advantages of mobile agents is able to
migrate to different hosts to perform tasks based on
resources available in remote hosts. The purpose of the
mobile agent in this simulation example is to access
XML vehicle information data files at geographically dis-
tributed locations and process XML data interpretively.
The XML data files store vehicle information from a
laser-based highway vehicle detection system (Cheng
et al., 2001; Cheng et al., 2005).

A mobile agent dispatched by an agency in the host
bird1 visits remote host iel2 and ch. Fig. 8 shows part
of the mobile agent message sent from host bird1 to host
iel2. The mobile agent message contains the general
information of the agent, including agent name, agent
owner, and home agent platform. The agent tasks are
described within the TASK tag. The task attribute of
the TASK element specifies how many tasks the mobile
agent has. The num attribute indicates how many tasks
have been completed. The DATA element contains agent
data, code, and return results related to each task. The
sub-element DATA_ELEMENT contains the return data
ssage sent from host bird1 to host iel2.

1372 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
from the task. The sub-elementAGENT_CODE includes
mobile agent code to be executed in a remote host.
The mobile agent in this example has two tasks and
no task has been completed at this moment. The name
of return data array is results_iel2 for iel2 host and
results_ch for ch host, respectively. Two hosts that the
mobile agent is going to visit are iel2.engr.ucdavis.edu

and ch.engr.ucdavis.edu.
The task of the mobile agent on iel2 machine is to access

an XML hourly vehicle information file listed in Fig. 9, and
find the average vehicle speed at this station. The hourly
vehicle information file records the number of vehicles
passed through the detection station iel2 within an hour
and the average speed of vehicles. Program 1 lists a code
Fig. 9. The content of an XML

Program 1. A code fragment of the mobile

Fig. 10. The output of the mo
fragment of the mobile agent running on the iel2 machine.
Function parseNode() is a typical C XML processing pro-
gram. It can be executed interpretively without the need of
compilation in our system. The function searches each
node of the XML hourly vehicle information file and
retrieves the value of average speed element. This value is
then saved in the array results_iel2. Array results_iel2 is
an array in the mobile agent space (Ch space), which is
used to store the result obtained by the mobile agent. To
save the result into mobile agent structure, the return data
stored in the array results_iel2 is passed to the agent plat-
form space (C/C++ space) by Ch SDK API. The mobile
agent also displays the average speed on the iel2 machine
as shown in Fig. 10.
traffic information data file.

agent performing task on the iel2 host.

bile agent on the iel2 host.

Fig. 11. The content of the mobile agent message from host iel2 to host ch.

Fig. 12. The results of the mobile agent are sent back to the home agency.

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1373
After visiting iel2 station, the mobile agent visits ch sta-
tion. The result obtained from the iel2 station is also sent to
the ch station with the mobile agent message. The content
of the mobile agent message sent from host iel2 to host ch is
shown in Fig. 11. Since the mobile agent has completed the
task on iel2, the num attribute of TASK element has been
changed to 1, i.e., one task has been finished. In addition,
the return data from the host iel2, which is 63.000000,
has been included in the DATA_ELEMENT element of
task 1.

The task of the mobile agent on ch machine is the same
as that on iel2 machine excepting processing an XML data
file in ch machine. The results of the mobile agent obtained
from both iel2 and ch stations are sent back to the home
agency bird1 and displayed in a terminal of bird1 machine
as shown in Fig. 12.

7. Performance evaluation

A number of researchers have studied mobile agent per-
formance in different aspects. Peine (2002) compared
mobile agent approach with an equivalent stationary
implementation in a distributed searching application.
Johansen (1998) compared mobile agent and client/server
implementations in image and video processing applica-
tions, and Gray et al. (2002) compared the scalability of
these two paradigms. Spyrou et al. (2004) qualitatively
and quantitatively analyzed a set of software models built
on client/server model or mobile agents for accessing a
Web server.

As we described in Section 2, using XML to represent
different types of information in mobile agent systems has
a number of advantages. However, a high-level XML data
representation will inevitably introduce performance over-
head. To evaluate the performance overhead of XML rep-
resentation, a comparison test has been conducted to
compare times needed for a mobile agent to process a set
of traffic records. Traffic records contain the information
of each passed vehicle, including date, time, and vehicle
speed. These traffic records are stored in data files, SQL
databases, and XML files. Fig. 13 shows traffic records in
a database, and Fig. 14 shows traffic records in an XML
file.

Fig. 15 shows a comparison chart of the processing time
that a mobile agent needs to find the average speed of vehi-
cles passed through a detection station. When traffic data
are stored in data files, a mobile agent reads the speed of
each vehicle and calculates the average speed using stan-
dard C functions. For SQL database format, a mobile
agent accesses a vehicle information database through
interpretive ODBC, Ch ODBC. The mobile agent first ini-
tiates an ODBC driver, then connects to the database, and

Fig. 13. A traffic record database.

Fig. 14. A traffic record XML file.

0

100

200

300

400

500

600

700

100 1000 3000 5000 7000 9000

Number of traffic records

M
ob

ile
 a

ge
nt

 p
ro

ce
ss

in
g

tim
e

(m
ill

i s
ec

on
d) Data files

XML files

Databases

Fig. 15. A comparison of mobile agent processing time.

1374 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
last performs data queries to get vehicle speeds. When traf-
fic data are stored in XML files, a mobile agent builds an
XML tree from the XML file and goes through each node
to read vehicle speeds. Comparing with XML files and dat-
abases, data file format takes less time when the number of
traffic records is small. This is because a mobile agent
doesn’t need to initiate an ODBC driver and connect to
the database or build an XML tree when the traffic data
are stored in a data file. However, the mobile agent pro-
cessing times for data file format increase rapidly when
the number of records increases. As a result, database for-
mat takes less time than data files when the number of traf-
fic records is large.
Although XML data representation takes longer pro-
cessing time comparing to regular data representations
as shown in Fig. 15, the performance overhead is not
significant. Moreover, we can expect a similar perfor-
mance as SQL databases when using XML databases
store XML data information. Most likely, the processing
time for a huge set of XML data in an XML database
will be less than that for the same size data set stored
in a data file.

8. Conclusions

This article presents an XML-based approach for
inter-agent communication, inter-platform mobile agent
migration, and information representation in mobile
agent systems. Our experience shows that using XML
to encode different types of messages, including simple
agent communication messages and messages containing
mobile agents, is simple, convenient, and easy to change.
The exploration of using mobile agents to process XML
data interpretively opens the door to simplify the archi-
tecture of a mobile agent system for building a program-
mable information base in XML. Since mobile agents are
able to read and manipulate XML data directly, other
types of information in agent systems, such as raw data
and access control policies, can be represented in XML
also. The performance evaluation shows that the perfor-
mance overhead of XML data representation is not sig-
nificant, and is acceptable for the systems where the
benefits of XML are more important than a high-perfor-
mance. Since the database format presents a good per-
formance for a large size of data source, further
exploration of using XML databases to store XML data
will be worthwhile.

B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376 1375
References

Ametller, J., Robles, S., Borrell, J., 2003. Agent migration over FIPA
ACL messages. Mobile Agents for Telecommunication Applications,
Proceedings 2881, 210–219.

Cabri, G., Leonardi, L., Zambonelli, F., 2001. XML dataspaces for the
coordination of Internet agents. Applied Artificial Intelligence 15, 35–
58.

Ch – An Embeddable C/C++ Interpreter. Softintegration, Inc. <http://
www.softintegration.com/>.

Chen, B., 2005. Runtime support for code mobility in distributed systems.
In: Department of Mechanical and Aeronautical Engineering. Ph.D.
Dissertation, University of California, Davis.

Chen, B., Cheng, H.H., 2005. Interpretive OpenGL for computer
graphics. Computers & Graphics 29, 331–339.

Chen, B., Cheng, H.H., Palen, J., 2004. Agent-based real-time computing
and its applications in traffic detection and management systems. In:
the ASME 24th Computers and Information in Engineering Confer-
ence. Salt Lake City, Utah, pp. 543–552.

Chen, B., Cheng, H.H., Palen, J., 2006. Mobile-C: a mobile agent platform
for mobile C/C++ agents. Software-Practice & Experience 36, 1711–
1733.

Cheng, H.H., 1993. Scientific computing in the Ch programming
language. Scientific Programming 2, 49–75.

Cheng, H.H., Trang, D.T., 2006. Object-oriented interactive mechanism
design and analysis. Engineering with Computers 21 (MAY), 237–246.

Cheng, H.H., Shaw, B.D., Palen, J., Larson, J.E., Hu, X.D., Van Katwyk,
K., 2001. A real-time laser-based detection system for measurement of
delineations of moving vehicles. IEEE/ASME Transactions on Mech-
atronics 6, 170–187.

Cheng, H.H., Shaw, B.D., Palen, J., Lin, B., Chen, B., Wang, Z.Q.,
2005. Development and field test of a laser-based nonintrusive
detection system for identification of vehicles on the highway. IEEE
Transactions on Intelligent Transportation Systems 6 (June), 147–
155.

Ch ODBC. <http://www.softintegration.com/products/toolkit/odbc//>.
Chong, C., Jiwen, H., Kai, B., Zhongfan, M., 1999. Mobile software agent

model and the architecture of JMSAS system. In: The First Interna-
tional Workshop on Mobile Agent for Telecommunication Applica-
tions. Ottawa, Canada, pp. 37–52.

Ch XML Package for Libxml2. <http://chlibxml2.sourceforge.net//>.
De Meo, P., Rosaci, D., Sarne, G.M.L., Terracina, G., Ursino, D., 2003.

An XML-based adaptive multi-agent system for handling e-commerce
activities. Web Services-ICWS-Europe (Lecture Notes in Computer
Science), vol. 2853. Springer-Verlag, Berlin, Germany, pp. 152–166.

FIPA. The Foundation for Intelligent Physical Agents. <http://www.fi-
pa.org/>.

FIPA, FIPA Agent Management Specification. <http://www.fipa.org/
specs/fipa00023/SC00023K.html/>.

Glushko, R.J., Tenenbaum, J.M., Meltzer, B., 1999. An XML framework
for agent-based E-commerce. Communications of the Acm 42
(March), 106–114.

Gray, R.S., Cybenko, G., Kotz, D., Peterson, R.A., Rus, D., 2002.
D’Agents: applications and performance of a mobile-agent system.
Software-Practice & Experience 32, 543–573.

Griss, M.L., 2001. Software agents as next generation software compo-
nents. In: Heineman, G.T., Councill, W.T. (Eds.), Component-based
Software Engineering: Putting the Pieces Together. Addison-Wesley,
Boston.

Grosof, B.N., Labrou, Y., 1999. An Approach to using XML and a Rule-
based Content Language with an Agent Communication Language.
Technical Report, IBM Research Division.

Johansen, D., 1998. Mobile agent applicability. In: Mobile Agents: Second
International Workshop, MA’98 (Lecture Notes in Computer Sci-
ence), vol. 1477. Springer, Berlin/Heidelberg, pp. 80–98.

Lange, D.B., Oshima, M., 1999. Seven good reasons for mobile agents.
Communications of the Acm 42 (March), 88–89.
Leung, E.W.C., Li, Q., 2004. XML-based agent communication in a
Distributed Learning Environment. Advances in Web-Based Learning
– ICWL 2004 (Lecture Notes in Computer Science), vol. 3143.
Springer-Verlag, Berlin, Germany, pp. 136–146.

Libxml2. The XML C parser and toolkit of Gnome. <http://www.xml-
soft.org/index.html/>.

Madjarov, I., Boucelma, O., Betari, A., 2004. An agent- and service-
oriented e-Learning platform. In: Advances in Web-Based Learning –
ICWL 2004, vol. 3143, pp. 27–34.

Mathieu, P., Verrons, M., 2003. A generic negotiation model for MAS
using XML. In: The IEEE International Conference on Systems. Man
and Cybernetics, pp. 4262–4267.

Mobile-C, a Multi-Agent Platform for Mobile C/C++ Agents. <http://
www.mobilec.org//>.

Oracle XML Developer’s Kit. <http://www.oracle.com/technology/tech/
xml/xdkhome.html/>.

Overview of SGML Resources. <http://www.w3.org/MarkUp/SGML//>.
Peine, H., 2002. Application and programming experience with the Ara

mobile agent system. Software-Practice & Experience 32, 515–541.
Sedbrook, T., 2001. Integrating e-business XML business forms and rule-

based agent technologies. Expert Systems 18, 250–260.
Spyrou, C., Samaras, G., Pitoura, E., Evripidou, P., 2004. Mobile agents

for wireless computing: the convergence of wireless computational
models with mobile-agent technologies. Mobile Networks & Applica-
tions 9 (October), 517–528.

Wang, Z.Q., Cheng, H.H., 2006. Portable C/C++ code for portable XML
data. IEEE Software 23 (JAN-FEB), 76–81.

World Wide Web. <http://www.w3.org//>.
Yu, Q.C., Cheng, H.H., Cheng, W.W., Zhou, X.D., 2004. Ch OpenCV for

interactive open architecture computer vision. Advances in Engineer-
ing Software 35 (August–September), 527–536.

Yu, Q.C., Chen, B., Cheng, H.H., 2004. Web-based control system design
and analysis – design, implementation, and salient features. IEEE
Control Systems Magazine 24 (June), 45–57.

Bo Chen received the B.S. and M.S. degrees in electrical engineering from
the Zhejiang Sci-Tech University, China, and the Ph.D. degree in
mechanical and aeronautical engineering from the University of Califor-
nia, Davis in 2005.

She is currently an Assistant Professor in the Department of Mechanical
Engineering – Engineering Mechanics at Michigan Technological Uni-
versity. Her research interests include mobile agent and multi-agent sys-
tems, intelligent distributed control, sensor network, and intelligent
transportation systems.

David D. Linz obtained a B.S degree in mechanical engineering from the
University of California, Davis in 2006. He worked as an undergraduate
research assistant at the Integration Engineering Laboratory at UC Davis
from 2004 to 2006. He currently is a graduate student with a research
interest in computational and spectral methods for fluid dynamics at the
University of Michigan in Ann Arbor.

Harry H. Cheng received the M.S. degree in mathematics and the Ph.D.
degree in mechanical engineering from the University of Illinois at Chi-
cago in 1986 and 1989, respectively.

Before joining the faculty at the University of California, Davis in 1992, he
worked as a Senior Engineer on information-driven Systems at the
Research and Development, United Parcel Service, Inc. from 1989 to
1992. Currently, he is a Professor and Director of the Integration Engi-
neering Laboratory at the University of California, Davis. He is also a
member of Graduate Group in Computer Science and Graduate Group in
Electrical and Computer Engineering at UC Davis. He is the chief
architect of an embeddable C/C++ interpreter Ch for script computing,
which is being widely used in both academia and industry. He holds one
U.S. patent and has published over 120 papers in refereed journals and
conference proceedings. His current research interests include mobile
agent systems, intelligent mechatronic and embedded systems, computer-

http://www.softintegration.com
http://www.softintegration.com
http://www.softintegration.com/products/toolkit/odbc/
http://chlibxml2.sourceforge.net/
http://www.fipa.org
http://www.fipa.org
http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.xmlsoft.org/index.html
http://www.xmlsoft.org/index.html
http://www.mobilec.org/
http://www.mobilec.org/
http://www.oracle.com/technology/tech/xml/xdkhome.html
http://www.oracle.com/technology/tech/xml/xdkhome.html
http://www.w3.org/MarkUp/SGML/
http://www.w3.org/

1376 B. Chen et al. / The Journal of Systems and Software 81 (2008) 1364–1376
aided design and manufacturing, robotics, and intelligent transportation
systems.

Dr. Cheng received a Research Initiation Award from the National
Science Foundation, the Best Paper Award at the IEEE/ASME Inter-
national Conference on Mechatronic and Embedded Systems and
Applications, the Procter and Gamble Best Paper Award as well as the
Waldron Award at the Applied Mechanisms and Robotics Conferences.
He received an Outstanding Contribution Award from United Parcel
Service, Inc. He participated in revision of the latest C standard called
C99 through ANSI X3J11 and ISO S22/WG14 C Standard Committees.
He is a Fellow of ASME and a Senior Member of IEEE, IEEE Com-
puter Society, and IEEE Robotics and Automation Society. He is the
Chair of the ASME Technical Committee on Mechatronic and
Embedded Systems and Applications. He is also the Chair of the
Technical Committee on Mechatronic and Embedded Systems in ITS of
the IEEE Intelligent Transportation Systems Society. He is the Confer-
ence Chair of the 2008 IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications. He was the
Chair of the Technical Area of Embedded and Ubiquitous Computing
and Co-Chair of Technical Area of Computers in Electromechanical
Systems in the ASME Division of Computers and Information in
Engineering. He served as the General Co-Chair of the 2007ASME/
IEEE International Conference on Mechatronic and Embedded Systems
and Applications, the Program Chair of the 2006 IEEE/ASME Inter-
national Conference on Mechatronic and Embedded Systems and
Applications.

	XML-based agent communication, migration and computation in mobile agent systems
	Introduction
	Good reasons of exploiting XML in agent systems
	Messages in Mobile-C
	System architecture and major components of Mobile-C
	Mobile agent message processing and life cycle management
	An example of a mobile agent visiting remote hosts and processing XML data interpretively on remote hosts
	Performance evaluation
	Conclusions
	References

