
1. INTRODUCTION
A hybrid electric vehicle (HEV) has better fuel economy

and less emission than a conventional internal combustion
engine vehicle due to the existence of electric powertrain.
The introduction of additional powertrain components,
however, makes the HEV control more challenging and the
performance of HEVs is more sensitive to their control
strategies. To achieve maximum fuel economy and minimum
emissions, researchers in the automotive community have
made significant effort to investigate the major factors
impacting fuel efficiency and develop optimal power
management strategies for hybrid vehicles [1,2,3,4,5].
Research results showed that, in addition to vehicle and fuel
characteristics, driving patterns have a strong impact on the
fuel consumption and exhaust emissions [6, 7]. To optimize
vehicle performance, multi-mode driving control method has
been proposed for the adaptive vehicle control [8, 9]. The
multi-mode driving control is defined as the control strategy
which is able to switch a current control algorithm to the one
that is optimized to the recognized driving pattern [8]. The
ability to dynamically select control algorithms based on
identified driving patterns leads to adaptive vehicle control,

improved energy efficiency, and reduced green gas
emissions.

A driving pattern is typically defined as the driving cycle
of a vehicle in a particular environment [10]. To recognize
driving patterns, it is necessary to identify a list of
characteristic parameters which can be used to describe
driving patterns. Although there is no consensus among
researchers about what parameters can be used for driving
pattern recognition, several studies have attempted to find
such a list of parameters. Ericsson [6] investigated the impact
of 62 driving pattern parameters on fuel economy and
emissions using a large amount of testing driving cycles. The
study showed that nine driving pattern parameters (four
associated with power demand and acceleration, three with
gear changing behavior, and two with speed level) had an
important effect on fuel consumption and emissions. Lin et
al. [9] selected power demand related parameters and stop
time for hybrid electric truck driving pattern recognition. In
addition to vehicle parameters, Jeon et al. [8] incorporated
road grade parameters in the driving pattern recognition. For
pattern classification method, neural network [8], support
vector machine (SVM) [11], and learning vector quantization
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vectors to one of the driving patterns in the reference database. To establish reference driving cycle database, the
representative feature vectors for four federal driving cycles are generated using feature extraction method. The quality of
representative feature vectors with different feature extraction methods is evaluated by examining the separation of feature
vectors in the feature space and the success rate of the pattern recognition. The performance of the presented adaptive
control strategy based on driving pattern recognition is evaluated using a powertrain/propulsion simulation and analysis
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network [12] were applied for the driving pattern
classification. However, most existing driving pattern
recognition methods are based on binary classification, which
may cause losing of information.

The importance of driving patterns to the fuel economy
and emission justifies a systematic study of driving pattern
recognition. In this paper, supervised pattern recognition
approach is studied for the classification of a real-world
driving cycle to a similar driving cycle in the representative
driving cycle group. Four federal driving cycles, Urban
Dynamometer Driving Schedule (UDDS), Highway Fuel
Economy Driving Schedule (HWFET), a high acceleration
aggressive driving schedule (US06), and an air conditioning
driving schedule (SC03), are selected as representative
driving cycles. These driving cycles represent different street
types, driver behavior, and weather condition. With pattern
recognition method, driving cycles and environmental
information for various driving patterns are represented by
corresponding features vectors. The classification is based on
the distance of a test feature vector (test driving cycle) to the
representative feature vectors (representative driving
patterns). The test driving pattern is classified to one of
representative driving pattern with which the test driving
pattern has the smallest distance. The identified driving
pattern information is then used to implement adaptive
control strategies. The performance of adaptive control is
evaluated in a powertrain/propulsion simulation and analysis
software - Autonomie.

The rest of the paper is structured as follows. Section 2
introduces driving cycle classification based on the pattern
recognition method. Section 3 presents the classification of
real-world driving cycles using representative feature vectors
of four federal driving cycles. Section 4 studies the impact of
dissimilarity measures and feature extraction methods on the
performance of driving cycle pattern recognition. Section 5
discusses adaptive vehicle control based on driving cycle
pattern recognition. Section 6 concludes the presented work.

2. PATTERN-RECOGNITION-BASED
DRIVING CYCLE RECOGNITION

2.1. CONCEPT OF PATTERN
RECOGNITION

Pattern recognition is a scientific discipline whose goal is
to classify objects into a number of meaningful categories or
classes [13]. In pattern recognition, the patterns to be
classified are usually the groups of measurements, defining
points in an appropriate multidimensional space [13]. The
measurements used for the classification are described by
features. If p features are used fi, i=1, 2… p, these p features
can form a feature vector F = (f1, f2,…, fp)T, where T denotes
transposition. A feature vector is a point in P dimensional
space RP. The process of supervised pattern recognition
consists of feature extraction and classification two steps. In

the feature extraction stage, a number of feature members are
selected from the measurement data of the pattern. These
feature members are used to form feature vectors to represent
the pattern. In the pattern classification stage, the
dissimilarity of the test pattern with the representative
patterns is evaluated. The dissimilarity of two patterns is
defined as a function of the distance between the
corresponding feature vectors of the patterns. Usually, the
shorter distance means higher similarity and the longer
distance means lower similarity. As such, the test pattern is
classified to one of representative pattern with which the test
pattern has the smallest distance. Different types of distance
deifications can be used in pattern recognition. The Euclidian
distance is one of the most commonly used distances. Let X =
(x1, x2,…, xn)T and Y = (y1, y2, y2,…,yn)T denote two feature
vectors. The Euclidian distance between these two feature
vectors is defined below:

(1)

2.2. FEATURE SELECTION FOR
DRIVING CYCLE PATTERN
RECOGNITION

Feature selection is application dependent. The rule of
thumb for feature extraction is that the selected features can
replicate most information of the original measurement data
and separate feature vectors for different patterns in the
feature space. To classify driving cycles, thirty-nine
characteristic parameters were initially chosen based on Jeon
and Ericsson's work [6, 8]. The high dimension of feature
vectors, however, impedes practical application of driving
cycle pattern recognition in real-time. To reduce the
dimension of feature vectors, numerous simulation tests were
performed to find a reduced set of feature members and the
weighting factor for each feature member. The selection of
the feature members and their weighting factors are based on
if the representative feature vectors of individual driving
cycles are clearly separated in the feature space. The
simulation work finally identified fifteen feature members
and corresponding weighting factors, listed in Table 1, to
form feature vectors for driving cycles as shown below:

(2)

Where ai is a feature member and ki is a weighting factor
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2.3. REPRESENTATIVE FEATURE
VECTORS FOR SELECTED DRIVING
CYCLES

As discussed previously, a driving pattern is determined
by multiple factors, including road type, driver behavior, and
weather and traffic conditions. To form a good representative
driving cycles base which are able to reflect aforementioned
features, four federal driving cycles, UDDS, HWFET, US06,
SC03, are selected as representative driving cycles. UDDS
and HWFET are two driving cycles representing two road
types. US06 represents the driver's behavior of aggressive
driving. SC03 is chosen to represent the influence of humid
weather. The profiles of these four driving cycles are shown
in Figure 1, Figure 2, Figure 3, Figure 4. HWFET is a typical
highway driving cycle featuring high speed and short stop
time, while UDDS has the features of low average speed and
long stop time. US06 has the highest average speed and
presents extreme acceleration (a>2.5 m/s2). SC03 is similar to
UDDS but its acceleration is milder than that of UDDS due to
the usage of air conditioner.

Figure 1. The driving cycle of UDDS.

Figure 2. The driving cycle of HWFET.

Figure 3. The driving cycle of US06.

Figure 4. The driving cycle of SC03.

 

Table 1. Driving cycle feature members and corresponding weighting factors.
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A feature vector of a driving cycle is calculated based on
partial data points of a driving cycle for the quick recognition
of driving cycle patterns, which is especially valuable in real-
time applications. The number of data points is defined by the
size of a sample window as shown in Figure 5. In this paper,
the window size is set to 450 sample points. To speed up the
recognition of driving cycle patterns, the technique of
sequential processing of measurement is applied. As such, the
next feature vector is calculated by advancing the sample
window by 50 sample points. During real-time driving cycle
pattern recognition, vehicle controllers collect a number of
data points defined by the size of the sample window and
calculate a feature vector for the current sample window
using parameters defined in Table 1. The real driving cycle is
then classified to one of four representative driving cycles
using classification algorithms and calculated feature vector.
Once the driving cycle is recognized, the control algorithm/
parameters are switch to the one that is optimal to recognized
driving pattern. The time between one control decision points
to the next control decision point is 50 seconds in this study if
the sample rate is 1 Hz.

Figure 5. The definition of sample window and
sequential processing of measurements.

To generate the representative feature vectors for the
UDDS, HWFET, US06, and SC03, the velocity data for these
driving cycles were downloaded from the U.S.
Environmental Protection Agency website[14]. By comparing
the speed profiles, the beginning part of the UDDS and US06
are similar to each other. To correctly distinguish UDDS and
US06 driving cycles, the most representative data segments
were used to generate feature vectors for the corresponding
driving cycles. For the UDDS, velocity data starting from
347th second to the end of the driving cycle were used since
this segment contains frequent stops, which is the major
feature of the UDDS. For the US06 cycle, velocity data
starting from 134th second to the end of the driving cycle
were used. This segment differs from UDDS and represents
the aggressive feature of driving (large accelerations). Since

these representative segments have different lengths, a
common data length of 2000 data points was specified to
ensure the same number of representative feature vectors for
each driving cycle. The representative segment for each
driving cycle was repeated to form a data set with a length of
2000. In each data set, the first 450 data points were used to
form the first sample window and find the first feature vector
using equation (2). The second feature vector was calculated
by advancing the sample window by 50 data points. From
equation (2) we can see that the dimension of feature vectors
is 15. To display high dimensional driving cycle feature
vectors, the Principal Component Analysis (PCA) algorithm
was applied to the generated representative feature vectors.
The first and second principal components were then used to
plot representative feature vectors in 2-dimensional space.
Figure 6 shows the distribution of representative feature
vectors for the selected four driving cycles.

Figure 6. The distribution of the feature vectors of
selected four driving cycles.

3. CLASSIFY REAL WORLD
DRIVING CYCLES USING

REPRESENTATIVE FEATURE
VECTORS

To validate the effectiveness of representative feature
vectors for real-world driving cycle pattern recognition, two
real-world driving cycles were adopted for the performance
test. The two real-world driving cycles were collected by a
mild-hybrid Chevy Malibu driven in the urban and suburban
area near the downtown Hancock. The routes of real-world
city cycle (RW-CC) and real-world highway cycle (RW-HC)
are shown in Figure 7 and Figure 8. The speed profiles for
these two driving cycles are shown in Figure 9 and Figure 10.
To classify real-world driving cycles to one of the selected
four driving cycles, the feature vectors for the RW-CC and
RW-HC were generated using the feature extraction method
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described in Section 2. The classification is to identify to
which pattern the test pattern belongs. The k-Nearest
Neighbor (kNN) algorithm was employed for the driving
cycle classification. For a test feature vector x, the nearest
neighbor rule is summarized as follows. (1) Calculate the
distances of the test feature vector x to each of representative
feature vectors shown in Figure 6. (2) Identify the k nearest
neighbors of representative feature vectors to the vector x.
The number of k is general not to be a multiple of the number
of classes M. (2) Out of these k samples, identify the number
of vectors, ki, that belong to class ωi, i = 1, 2, ……, M, Σiki =
k. (3) Assign x to the class ωi with the maximum number ki of
samples. In the real-world driving cycle test, the value of M is
4 and the number of k is chosen to be 13. The distances
between the test feature vector and representative feature
vectors was calculated by the Euclidean distance.

Figure 7. The route of city cycle.

Figure 8. The route of highway cycle.

Figure 9. The speed profile of city cycle.

Figure 10. The speed profile of highway cycle.

The success rates of classifying the RW-CC to the UDDS
category and the RW-HC to the HWFET are shown in Figure
11. In the classification test, the success rate of driving cycle
pattern recognition was calculated with different size of the
sample window. The tested sample window sizes include 50,
100, 150, 200, 250, 300, 350, 400, and 450. Figure 11 show
that the larger size of the sample window has a higher pattern
recognition success rate for both RW-CC and RW-HC. In
addition, the success rates of the RW-CC are higher than
RW-HC. This is due to the fact that the similarity of the RW-
CC with the UDDS is higher than the similarity of the RW-
HC with the HWFET.

4. PERFORMANCE STUDY
This section studies the impact of the dissimilarity

measures and the feature extraction methods on the quality of
representative feature vectors and the performance of the
driving cycle pattern recognition.
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4.1. THE IMPACT OF DISSIMILARITY
MEASURES ON PATTERN
RECOGNITION SUCCESS RATE

To test the impact of the dissimilarity measure (distance
between feature vectors) on the performance of the pattern
recognition, a number of dissimilarity measures were tested
for the driving cycle pattern recognition. The tested similarity
measures include Euclidean distance, Chebyshev distance,
Cosine distance, Correlation distance, and Mahalanobis
distance. Let X and Y are two feature vectors with dimension
n. The definitions of these dissimilarity measures are given
below:
• Chebyshev distance:

(3)
• Cosine distance:

(4)
• Correlation distance:

(5)

Where 
• The Mahalanobis distance of a multivariate vector X = (x1,
x2, ……, xn)T from a group of values with mean µ = (µ1, µ2,
……, µn) T and covariance matrix S is defined as:

(6)

Figure 12 shows the success rate of RW-CC pattern
recognition with various dissimilarity measures using kNN 13
classification method. From Figure 12 we can see that the
Euclidean distance is the only dissimilarity measure that has
good pattern recognition performance for the RW-CC pattern
recognition. Other dissimilarity measures, including Cosine
distance, Correlation distance, and Mahalanobis distance
have very bad performance for the RW-CC pattern
recognition. The average success rate of the Chebyshev
distance is only about 60% and it fluctuates significantly.
Figure 13 shows the success rate of RW-HC pattern
recognition with aforementioned dissimilarity measures. The
Mahalanobis distance shows the best performance of the RW-
HC pattern recognition. The Euclidean distance and the
Chebyshev distance also show the good performance when
the sample window size is larger than 300 data points.

Figure 12. The success rate of real city cycle recognition
using KNN-13 with various dissimilarity measures.

Figure 11. The success rate of real world driving cycle pattern recognition.
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Figure 13. The success rate of real highway cycle
recognition using KNN-13 with various dissimilarity

measures.

4.2. THE IMPACT OF FEATURE
EXTRACTION METHODS ON THE
QUALITY OF REPRESENTATIVE
FEATURE VECTORS

Various feature extraction methods have been proposed to
extract features from time series sensor data, such as Single
Value Decomposition [15], Discrete Fourier Transformation
[16, 17], Discrete Wavelet Transformation [18], Adaptive
Piecewise Constant Approximation [19], Discrete Cosine
Transformation [15], Chebyshev Polynomials [20], Piecewise
Aggregate Approximation [21], and Symbolic Aggregate
Approximation [22]. In this section, the performance of the
autoregressive (AR), DFT, and DWT feature extraction
methods for the driving cycle pattern recognition is studied.

4.2.1. Feature Extraction using Auto-Regressive
Model

For the normalized driving cycle data set X, it can be
fitted to an AR model of order p as

(7)

Where αi, i = 1,2,…, p is a coefficient of the AR model;
rk, k = p + 1,…, n is the residual between the driving cycle
data and the AR model value. The vector f (X) = (α1, α2,…,
αp)T can be used as the feature vector of the normalized data
X.

4.2.2. Feature Extraction using Discrete Fourier
Transform

Discrete Fourier Transform is one of techniques for
dimensionality reduction using spectral decomposition. In
this study, the DFT coefficients of the four driving cycle data
vary a lot within the frequency range 0-0.5Hz. The frequency

range 0-0.5Hz was equally divided into 5 small ranges, each
of which has 0.1Hz bandwidth. In each small range, the
frequency with largest amplitude was selected as a feature
member. The mean value of the DFT amplitudes in each
small frequency range was also selected as a feature member.
As such, the feature vector was formed by frequencies f1 - f5
and the mean amplitudes a1 - a5 as shown below

(8)

where k is the weighting factor of the amplitudes.

4.2.3. Feature Extraction using Discrete Wavelet
Transform

Discrete wavelet transform decomposes a signal into
layers of coefficients. These coefficients contain both
frequency and time domain information. Given a time series x
with the length of n, the discrete wavelet transform of x is
calculated by passing the time-series data through a series of
low pass and high pass filters. The outputs from the high pass
filter are called detail coefficients while the outputs from the
low-pass filter are called approximation coefficients. The
approximation coefficients are further decomposed in the
next iteration while the detail coefficients are kept as the
current level wavelet coefficients. To form feature vectors
from wavelet coefficients, feature extraction method
proposed in [23] was employed, which consists of two steps:
cluster determination and feature determination. The cluster
determination process determines the boundary of each
cluster in DWT coefficients matrix, while the feature
determination step calculates each element of the feature
vector using the Euclidean norms of coefficients in each
cluster.

4.2.4. Success Rate of the Pattern Recognition
using AR, DFT, and DWT Feature Extraction
Methods

Autoregressive, discrete Fourier transformation, and
discrete wavelet transformation feature extraction methods
were applied to the UDDS, HWFET, US06, and SC03
driving cycle data. The generated representative feature
vectors for these four driving cycles are shown in Figure 14,
Figure 15, Figure 16. The features vectors generated using
AR, DFT, and DWT methods are not well separated. With
these representative feature vectors, the success rates of
driving cycle pattern recognition were tested using kNN-9
classification method and Euclidean distance. The test results
are shown in Figure 17, Figure 18, Figure 19. As we can see
from these figures, the success rates, in generally, are lower
than the pattern recognition success rate using representative
feature vectors shown in Figure 6. Although the DFT feature
extraction method has high success rates for the RW-CC
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pattern recognition, the success rates for the RW-HC pattern
recognition is extremely low.

Figure 14. The distribution of AR-based feature vectors.

Figure 15. The distribution of DFT-based feature
vectors.

Figure 16. The distribution of DWT-based feature
vectors.

Figure 17. Success rate of pattern recognition using AR
based feature extraction method.

Figure 18. Success rate of pattern recognition using
DFT based feature extraction method.

Figure 19. Success rate of pattern recognition using
DWT based feature extraction method.

5. ADAPTIVE CONTROL BASED ON
DRIVING CYCLE PATTERN

RECOGNITION
The adaptive control is achieved through the real-time

driving cycle pattern recognition and dynamic change the
control parameters that are optimized to the recognized
driving cycle. To implement this adaptive control strategy in
a vehicle model, optimal control parameters for each
representative driving cycle need to be identified. The
simulation software and the vehicle model used to evaluate
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the improvement of fuel economy for the proposed adaptive
control are the powertrain/propulsion simulation and analysis
software - Autonomie [24] and the Prius MY04 model.

5.1. OPTIMIZED CONTROLLER GAINS
FOR INDIVIDUAL DRIVING CYCLES

The Prius MY04 model in Autonomie has three major
modules: the driver controller module, the powertrain
controller module, and the vehicle powertrain architecture
module. The driver controller module determines how much
power is needed from the vehicle powertrain according to the
difference between the target vehicle speed and the actual
vehicle speed. The powertrain controller module determines
the torque demands of the engine, motor 1, and motor 2. The
simulation results showed that the proportional and integral
gains of the two controllers; one is the driver controller and
the other one is the motor 2 controller, affect the fuel
economy of the vehicle under different driving cycles. To
reduce fuel consumption, these four controller parameters are
selected to dynamically change during the fuel economy
simulation for different input driving cycles. To find optimal
controller gains for different driving cycles, 36 simulations
are carried out for each representative driving cycle and 144
simulations in total are conducted for 4 federal driving cycles.
When one optimal gain is being searched, the values of other
3 gains are fixed. The final optimized controller gains for
four federal driving cycles are listed in Table 2.

5.2. THE IMPROVEMENT OF FUEL
ECONOMY WITH DYNAMIC
SELECTION OF CONTROLLER GAINS
BASED ON DRIVING CYCLE PATTERN
RECOGNITION

To evaluate the performance of the proposed adaptive
control based on the driving cycle pattern recognition, the
pattern recognition algorithm is integrated with the Prius
MY04 vehicle model in Autonomie. The output value of the
pattern recognition algorithm for SC03, UDDS, US06,

HWFET, and unclassified driving cycle (when the data points
is less than 300) is defined as 1, 2, 3, 4, and 0, respectively.
During simulation, a combination of three real-world city
cycle (RW-CC) plus one real-world highway cycle (RW-HC)
is input into the simulation. The pattern recognition result for
this combination is shown in Figure 20. As we can see from
Figure 20, the pattern recognition result is 0 in the first 300
seconds (data sample rate is 1 Hz) because there is not
enough data points for pattern recognition. After 300 seconds,
the pattern recognition algorithm successfully classifies the
input driving cycle to urban driving cycle. At 1398th second,
three real-world city cycle ends and the real-world highway
cycle starts. When the data points from the real-world
highway cycle add to the pattern recognition data buffer, the
buffer contains speed data both from real-world city cycle
and real-world highway cycle. This causes the fail of pattern
recognition from 1570th second to 1690th second. After 1690
seconds, most speed data in the pattern recognition data
buffer are from the real-world highway cycle, as a result, the
pattern recognition algorithm is able to successfully classify
the current driving cycle to highway driving cycle. The
output of the pattern recognition algorithm is then used to
select new controller gains to which the recognized driving
pattern has the highest fuel economy.

A comparison of fuel economy with default and
optimized controller gains is conducted. The input driving
cycles are a combination of real-world city cycle and real-
world highway cycle and a combination of four federal
driving cycles. The simulation result shows that the
optimized controller gains have better fuel economy in both
cases. The improvement of fuel economy for two different
combinations of driving cycles is shown in Table 3.

6. CONCLUSIONS AND FUTURE
WORK

Driving cycle recognition based on the pattern recognition
methodology is presented in this paper. In this approach, a
driving cycle is represented by feature vectors. These feature
vectors are formed by a number of features and

Table 2. Default and optimized controller gains.
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corresponding weighting factors. In order to classify a real-
world driving cycle to one of the driving cycles in a reference
database, four federal driving cycles: UDDS, HWFET, US06,
and SC03 are used to form this reference driving cycle
database. Fifteen feature parameters to which four federal
driving cycles are sensitive and corresponding weighting
factors are identified to form the representative feature
vectors for the four driving cycles. The performance of the
presented driving cycle pattern recognition method and the
impact of the dissimilarity measures and the feature
extraction methods on the success rate of the driving cycle
pattern recognition and the quality of representative feature
vectors are investigated using two real world driving cycles:
real-world highway cycle and real-world city cycle. The
evaluation result shows that the size of sample window, the
type of dissimilarity measures, and the feature extraction
method have a great impact on the performance of driving
cycle pattern recognition. The presented pattern recognition
algorithm is integrated with the Prius MY04 vehicle model in
Autonomie. The effectiveness of the adaptive control is
studied by comparing the fuel economy of adaptive control
with the fuel economy of fixed control parameters when a
combination of different driving cycles is inputted into the
model. The simulation results show that the adaptive control
can improve the fuel economy up to 2.63%. In the future
study, driving patterns representing factors such as driver

behavior, traffic condition, and the weather condition, will
also be investigated to realize more comprehensive driving
pattern recognition and thus greater fuel economy
improvement. In addition, dynamic selection of control
strategies for different driving patterns will also be studied.
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DEFINITIONS/ABBREVIATIONS
HEV

hybrid electric vehicle
SVM

support vector machine
UDDS

urban dynamometer driving schedule
HWFET

highway fuel economy driving schedule
US06

a high acceleration aggressive driving schedule
SC03

an air conditioning driving schedule
PCA

the principal component analysis
RW-CC

real-world city cycle
RW-HC

real-world highway cycle
kNN

The k-Nearest Neighbor
AR

autoregressive
DFT

discrete Fourier transform
DWT

discrete wavelet transform
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