
June 2004 45
0272-1708/04/$20.00©2004IEEE

IEEE Control Systems Magazine

T
he World Wide Web has provided an opportu-
nity for design and analysis of control systems
through the Internet. An increasing number of
Web-based software packages have been
developed to enhance the teaching and design
of control systems

[1]. Today, one of the most popu-
lar applications in control systems
is Web-based educational environ-
ments and laboratories. As an
example, the interactive study support environment pre-
sented in [2] provides course management, online exercis-
es, and laboratories. Based on VCLab [3], which contains
Java applets and MATLAB plug-ins, the system allows stu-

dents to enter MATLAB commands on the Web page and
submit these commands to the MATLAB program for exe-
cution. The output generated by these commands can be
displayed on the same Web page. To use this Web-based
study environment, however, the MATLAB software has to

be installed on the client
machines. Instead of using MAT-
LAB plug-ins to perform numerical
computation on the client side,
Java applets are sometimes used

for numerical computation on the client side. For example,
applications of Java applets can be found in the Web-based
two-degrees-of-freedom robot manipulator simulation sys-
tem [4] and the Virtual Control Lab [5]. Due to the lack of

Design, implementation, and salient features

By Qingcang Yu, Bo Chen,
and Harry H. Cheng

©
D

IG
IT

A
LV

IS
IO

N

F E A T U R EF E A T U R E

powerful numerical computing capabil-
ities in Java and its applets, however,
applications using Java applets alone
in the simulation of dynamic systems
are limited.

Web-based laboratories can be
divided into two categories: virtual
and remote. A virtual laboratory
allows clients to continuously access a
simulation process in a remote server.
The simulation engine in the server
could be MATLAB or any other control
tool kit. A remote laboratory offers a
physical experimental apparatus to
remote users through the network.

Most Web-based laboratories use
MATLAB as the computational engine.
For example, Sanchez et al. [6] pro-
posed a virtual and remote laboratory
using Java and MATLAB. In this sys-
tem, a Web page with Java applets is
used as the graphical user interface
(GUI) for remote access of the lab. The
computations for controller design
and analysis are performed in MAT-
LAB in a separate process invoked by
an application server called Internet
Virtual Lab (IV-Lab). The application
server communicates with the Web
server using TCP/IP sockets. The
implementation of such a virtual con-
trol laboratory is complicated because
of the inherent deficiency in interfac-
ing MATLAB with external programs.
Instead of writing an application serv-
er on their own, other remote labora-
tories [7], [8] use the MATLAB Web
server (MWS) to communicate
between the HTTP Web server and
MATLAB. However, even when using
MWS, the communication between the
HTTP Web server and MATLAB is inef-
ficient. In our experience, software
based on MWS is difficult to develop
and maintain.

We have developed a Web-based
interactive control design and analysis
system (WCDAS) [9] based on Ch,
which is a C/C++ interpreter [10], [11],
and the Ch control systems toolkit
(CCST) [12], [13]. WCDAS covers many
classical and modern techniques for
control systems design and analysis.
Most functions in the system support

June 200446 IEEE Control Systems Magazine

Figure 1. A partial view of the index page of the Web-based control design and
analysis system. The functions provided by the system are classified into the eight
categories shown in Table 1.

1) Time Domain Response Analysis
Step response
Impulse response
Initial response
Simulation response

2) Frequency Domain Analysis
Bode diagram
Gain and phase margin
Nichols chart
Nyquist diagram
Frequency response

3) Analysis and Design in
State Space
Controllability analysis
Controllability staircase
Gramian
LQE design
LQG design
Lyapunov equation solvers
Observability analysis
Observability staircase
Pole placement

4) Root Locus Design
Root locus

5) Model Reduction and Dynamics
Bandwidth
Pole-zero map
Damping factors and natural
frequencies
DC gain
Sort poles
Minimal realization
Pzacancel

6) Model Conversion
State-space model
Transfer function model
ZPK model

7) System Conversion
Coordinate transformation
Continuous time to discrete time
Discrete time to continuous time
Discrete time to discrete time
Map delays to poles

8) System Interconnection
Series
Parallel
Feedback
Append
Connect

Table 1. WCDAS supports many commonly used functions for control system
design and analysis. These functions include both classical and modern
control methods.

both continuous-time and discrete-time linear time-invari-
ant systems modeled in state space, transfer functions, or
zero-pole-gain representations. Users can select a design
and analysis method and specify system model type, sys-
tem type, and system parameters in the Web browser.
These data are transferred to the
server for numerical computation,
and the simulation results are sent
back to the client through the com-
mon gateway interface (CGI) using
the Ch interpretive environment.
Because both CGI scripts and sim-
ulation programs are written in Ch, data exchange between
client and server is easily achieved. The system is avail-
able for use through the Web without any software instal-
lation, system configuration, or programming. This
Web-based system is ideal for teaching as well as for solv-
ing practical problems in control systems design and
analysis. The software packages Ch, CCST, and WCDAS are
available for downloading on the Web [12]. The design,
implementation, and salient features of WCDAS are
described in this article.

Ch and Web-Based
Control System
The Ch language [10], [11] is a
superset of the C interpreter. Ch
supports all features of the C lan-
guage standard ratified in 1990 [14].
New features such as complex num-
bers, variable length arrays, IEEE
floating-point arithmetic, and type-
generic mathematical functions first
implemented in Ch were adopted in
C99 [15], a new C standard ratified
in 1999. In addition, Ch supports
classes in C++ for object-based pro-
gramming. Like other mathematical
software packages such as MAT-
LAB, Ch has built-in support of two-
and three-dimensional graphical
plotting features and computational
arrays for matrix computation and
linear system analysis with
advanced numerical analysis func-
tions based on LAPACK. The appli-
cation programming interface (API)
of the CGI in Ch is similar to those in
active server pages (ASP) and Java
server pages (JSP). Four classes—
CResponse, CRequest, CServer, and
CCookie—are provided in the Ch
CGI toolkit [16]. CGI programming in
Ch is interpretive without compila-

tion and linking, platform independent, and easy to debug
and maintain. As a superset of C, Ch can interface with
C/C++ programs in both source code format and binary sta-
tic or dynamical libraries. Ch can also be embedded in
other application programs as a scripting engine [17].

The object-oriented CCST [12], developed in Ch, pro-
vides a C++ control class to support most classical and
modern control techniques. Its member functions contain
most functions and features found in the MATLAB Con-
trol System Toolbox [18]. Feature comparison of CCST
and the MATLAB Control System Toolbox, including sam-
ple code in both Ch and MATLAB for solving the same
problems, is available on the Web [12]. CCST is conve-
nient for modeling, designing, and analyzing continuous-
or discrete-time linear time-invariant control systems in

June 2004 47IEEE Control Systems Magazine

Figure 2. Overview of the user interface of WCDAS. The user can select a specific
function from the index page. The Web page Form 1 describes the selected function
and allows the user to select the system type and model type. The upper portion of
Form 2 shows a sample system. The user can also define a system in the lower por-
tion of this page. The customized system parameters are submitted in Form 3. Form 4
is the output page.

Result

Index Page

 Step

 Impulse

 ...

Description.

...

System Model

System Type

System Time

Input New
System
Parameters

...

Default System
Example

Define a New
System.

Form1

Form2

Form3

Form4

From the system developer’s point of view,
WCDAS is easy to maintain and extend.

both time and frequency domains due to user-friendly
graphical representations. Control systems can be mod-
eled in the form of transfer functions, zero-pole-gain rep-
resentations, or state-space equations.

WCDAS is developed using Ch, Ch CGI, and CCST. Unlike
Web-based laboratories that use the MATLAB engine, data

received by the HTTP server in our system are passed to a
computational engine directly through CGI without an extra
application server. This approach greatly simplifies the
implementation of Web-based control systems design and

analysis systems. With
our Web-based sys-
tem, control systems
design and analysis is
performed using a
Web browser on the
client machine without
any software installa-
tion or tedious pro-
gramming. The user
selects a simulation
method, system type,
system model type,
and other system para-

meters in the Web browser. These selections and data are
then transferred to the Web server for computation using Ch

and CCST through CGI. The text or
graphical results are sent back and dis-
played in the client Web browser.

Features of the Web-
Based Control System
WCDAS makes all features and capabil-
ities of CCST accessible to users
through the Web without need for pro-
gramming. By taking advantage of the
Ch language environment and CCST,
WCDAS provides commonly used func-
tions in control systems design and
analysis such as time-domain re-
sponse, frequency-domain response,
system analysis, system design, model
conversion, and system conversion.
Most functions can be applied to both
continuous- and discrete-time linear
time-invariant (LTI) systems, which
are modeled in single-input, single-out-
put (SISO) and multi-input, multi-out-
put (MIMO) state-space equations,
transfer functions, or zero-pole-gain
representations. The functionalities of
WCDAS are outlined in Table 1. Figure
1 gives a partial view of the index page
of the WCDAS.

All functions in WCDAS are interac-
tive, and all parameters such as sys-
tem types, system model types, and
system model data are selected or
entered online to solve control design
and analysis problems. The user inputs

June 200448 IEEE Control Systems Magazine

Figure 3. System model type and system type selection page (Form 1). This page
allows the user to choose the desired model and system types.

With WCDAS, control system design and analysis
is performed using a Web browser on the client
machine without any software installation or
tedious programming.

are validated, and an informative error
message is displayed when the inputs
are not valid.

A unique feature of WCDAS is its
ability to design, analyze, and verify
control strategies over the Internet
without software installation, system
configuration, or programming. The
user can focus on the control systems
problems and obtain the results inter-
actively. WCDAS provides an example
for each function to il lustrate its
usage. By following the example,
entering the system parameters in the
form, and clicking buttons to select
different choices, the user can gain
experience in control systems design
and analysis.

From the system developer’s point of
view, WCDAS is easy to maintain and
extend. Each function is implemented
by several independent files. The details
of the file system of WCDAS are dis-
cussed later.

User Interface for the
Web-Based Control System
The step-response function is selected
as an example to illustrate the user
interface (UI) of WCDAS. Figure 2 shows
all Web pages related to the step-
response function.

The process of using a function in
WCDAS starts from the index page.
Clicking the “Step response” hyperlink
on the index page shown in Figure 1
brings up the page shown in Figure 3
labeled “Form 1.” As the first page of the
step-response function, the function
description is presented at the top of
the page. The user can select system
model type from state space, transfer
function, and zero-pole-gain representa-
tion and select system type as continu-
ous or discrete time. For a discrete-time
system, the user can specify a sampling time for the system
on this page.

By clicking the “Continue” button in Form 1, we
reach the page shown in Figure 4, labeled “Form 2.” A
default sample system whose system type and model
type are chosen in Form 1 is given in the upper por-
tion of the page. For the step-response function, the
default system in the state-space representation in
Figure 4 is

ẋ1 =−0.5x1 − 0.8x2 + u

ẋ2 = 0.8x1

y = 2x1 + 6.5x2.

According to the state-space equations,

ẋ = Ax + Bu, (1)

y = Cx + Du, (2)

June 2004 49IEEE Control Systems Magazine

Figure 4. Run a sample problem or customize a new system (Form 2). The
upper portion of this Web page gives a sample system. The user can obtain the
step response of the sample system by clicking the Run Example button. The
lower portion of the page allows the user to define a new system.

values for system matrices A, B, C, and D are

A =
[−0.5 −0.8

0.8 0

]

B =
[

1.0
0

]

C = [2 6.5]

D = [0].

The step response of this sample system is obtained by
clicking the “Run Example” button.

The user can also define a system in the lower portion
of Form 2. The dimensions of the system matrices, the

orders of the numerator and
denominator polynomials, or the
number of zeros and poles can be
specified by the user. For example,
the lower portion in Figure 4 asks
the user to specify dimensions of
the system matrices for the state-
space model chosen on Form 1
shown in Figure 3.

By clicking the “Submit” button
in the lower portion of Form 2, Form
3 is generated as shown in Figure 5.
This page asks the user to enter
parameters of the customized sys-
tem. The user can enter each entry
of the system matrices for a state-
space model; the coefficients of the
numerator and denominator polyno-
mials for a transfer function model;
or the zeros, poles, and gain for a
zero-pole-gain representation.

The step response of the default
system or user-defined system is
shown in Form 4 in Figure 6. This
Web page is reached by clicking the
“Run Example” button in Form 2 or
the “Run” button in Form 3. The user
can specify the final time of the
response and select grid on or off for
the step response in Form 3.

Implementation
of Web-Based
Control System

System Architecture
The system architecture of WCDAS
is shown in Figure 7. When a user
(client) sends the HTTP server a
request for a hypertext markup lan-
guage (HTML) page, the server can

respond to this request directly. If the user’s request is for
executing a Ch script program in the server, the Ch script
program is invoked by Ch CGI [16]. The Ch program
retrieves user’s data from an HTML document through
CGI by the member function “GetForms” of the CRequest
class and returns the resulting data to CGI by class CRe-
sponse. When a plot output is requested, a Ch plot pro-
gram named plot.ch is called by a Ch script to generate a
plot in the portable network graphics (PNG) image file for-
mat. The output plot, together with the text results gener-
ated by a Ch script, are assembled by member functions
of class CResponse and sent to the HTTP server via CGI
and then to the user’s Web browser.

June 200450 IEEE Control Systems Magazine

Figure 5. The parameter input page (Form 3). This page allows the user to enter
system parameters.

File System
Figure 8 shows the file system of WCDAS. Each
function is implemented by both HTML files
and Ch scripts. A Web browser can access
HTML files directly. Ch scripts are interpreted
by the Ch language environment through CGI.
For instance, the Step response on the index
page in Figure 1 is linked to an HTML file
step.html, which creates Form 1 in Figure 3.
Forms 2 and 3 and the resulting output page
Form 4 are created by a Ch script called
ctk_step.ch. The handling of multiple pages in
one Ch file is discussed later.

As previously described, if the output of a
function, such as a step response is a plot, then
the Ch script plot.ch is invoked to generate the
corresponding plot. The program plot.ch
retrieves the required data through CGI and
sends a plot stream back to CGI, as shown in
Figure 7.

Data Structure
Most functions in WCDAS support system mod-
els in state space, transfer functions, or zero-
pole-gain representations for both continuous-
and discrete-time systems. To customize a sys-
tem, the user has to make a suitable choice and
enter all model parameters. To avoid the need
for entering all of the inputs into a single Web
page, multiple Web pages are
designed for users to select choic-
es and enter data. The user’s
selections and system parameters
are saved and passed from one
Web page to another. To decrease
the complexity of handling and
transferring data, a clear and well-
organized data structure is
required.

Figure 9 shows the three-part
data structure used for state-
space models. The first part is
the header, which saves the page
ID, system model ID, system type
ID, and sampling time for dis-
crete-time systems. The page ID
is used to identify different forms
described previously. The value
of ss for the system model sys-
Model indicates state space equa-
tions. The value for system type
sysType can be either continuous
or discrete time. The value of
TsValue specifies the sampling

June 2004 51IEEE Control Systems Magazine

Figure 7. The system architecture of WCDAS. The Ch CGI manages the communica-
tion between the HTTP server and Ch programs.

Client

Internet

Client

Server

HTML

File

CGI

Ch

Program

Ch

Plot

Plot Data

PNG

Stream

Ch Language

Environment

(Server Kernel)

Figure 6. The resulting output page (Form 4). This page shows the step
response of the default or user-defined system.

time. The second part of the data struc-
ture defines the dimension of the matri-
ces A, B, C, and D in (1) and (2). The
third part of the data structure consists
of the values of system matrices. For a
transfer function or a zero-pole-gain
model, the second part defines the
order of the numerator and denomina-
tor polynomials of a transfer function or
the number of zeros and poles. The
third part defines the coefficients of the
numerator and denominator polynomi-
als or the values of zeros and poles.

To simplify the software implementa-
tion and to reduce code redundancy,
functions that are used to access the
structured data are implemented sepa-
rately and shared by all CGI scripts. As
an example, the function read Matrix-
Dim() of Table 2 reads matrix dimen-
sions from the structured data. In this
program, the variables name and value
are the arrays of strings with names and
values from a fill-out form. The integer
variable num contains the lengths of
these two arrays. The return value is an
array of eight integers with an index
starting from one. The eight elements in
the returned array stand for the extent of
the rows and columns of matrices A, B,
C, and D in sequence. The function ato-
iCheck() in Table 2 checks and converts
the string of value[i] to an integer. If
there is any error, such as an invalid
input for an integer number, a Web page
with an error message is generated.

Data Passing Between
Pages
As discussed before, the user’s model
definition data are entered in multiple
pages. Data passing between different
pages is shown in Figure 10, where
Forms 1–4 are defined in the previous
section of the UI. The header of the data
structure of the system, including sys-
tem model type and system type, are
specified in Form 1. This information is
passed to Form 2 when the user clicks
the “Continue” button in Form 1. If the
user selects to run the default example
in Form 2, WCDAS has all of the data
and can generate the resulting output
page directly. If the user selects to

June 200452 IEEE Control Systems Magazine

Figure 8. The file system of WCDAS. Each function has its own HTML file and
Ch CGI script for easy development and maintenance. Functions shared by mul-
tiple Ch scripts are treated as function files.

HTML Files Ch Files

Index HTML

step.html ctk_step.ch

Nichols.html ctk_nichols.ch

dcgain.html ctk_dcgain.ch

pplace.html ctk_pplace.ch

Plot.ch

Ch Function Files

...

...

...

...

Figure 9. The data structure for a state-space model. The data from HTML files
are passed to Ch scripts based on a predefined data structure for different sys-
tem models. The data structure used to represent a system in WCDAS is com-
posed of data header, dimension definitions, and data blocks.

Dimension

Routine Control
ID

Name Value

Header

Definition

Data Block

Dimension

Definition

Data Block

System Model

System Type

Sampling Time

Matrix A

Matrix B

Matrix C, D

Do

sysModel

sysType

TsValue

Arow

Acol

Float

.

.

.

Brow

Bcol

Float

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Page1

ss

Continuous Time

0.25

3

3

–0.5

3

1

1.0

define a new system in Form 2, the header information
and the dimensions of the system matrices are passed to
Form 3. Combining this information with the values of the
system matrices entered in Form 3 generates a complete
set of the data to represent a new system. All of the data
are passed to Form 4 to generate the output response of
the new system.

The Ch script plot.ch is invoked to generate a PNG
image stream when a plot output is requested. The method
for passing data to plot.ch is critical for Web-based plot-
ting. If the data are passed improperly, the output might
remain the same even if the user had submitted new sys-
tem parameters. In our implementation, we pass the para-
meters along with the name of the CGI script. A unique
name is created each time when the script plot.ch is
invoked. Therefore, different results are generated for dif-
ferent submissions. The output plot is displayed on the
Web page by the following code segment, where the mem-
ber function of class Cserver CServer::URLEncode() is used
to encode the data passed to the program:
printf (�<center><img src=\�/cgi-bin/chcgi/

toolkit/control/plot.ch�);

for (i=0;i<num;i++){ /* pass data to plot.ch */

putc (i==0 ? �?� : �&�, stdout);

fputs (Server.URLEncode(name[i]) ,stdout);

putc (�=�,stdout);

fputs (Server.URLEncode(value[i]),stdout);

}

Handling Multiple Pages
in One Ch Script
Forms 2–4 shown in Figure 2 are created by the same Ch
script file ctk_step.ch. This Ch script program can handle
three different pages. The value of the field named Do in
the header of the data structure shown in Figure 9 informs
this Ch script as to which page it is han-
dling. The value of the variable Do should
be one of the three values Page1, Form 2,
or Result. The critical part of program
ctk_step.ch is shown in Table 3.

The function printFormHead inside Table
3 displays the page ID, system model type,
system type, and sampling time at the top of
the form. The source code of this function is
shown in Table 4. To simplify CGI program-
ming, the Ch code between statements
fprintf stdout � ENDPRINT and END-
PRINT is transferred verbatim to an HTML
file. The variable inside the parentheses fol-
lowing the symbol “$” is replaced by the
actual value at runtime. For system inter-
connections, such as series interconnection
of two subsystems, the two subsystems

need to be identified with different model IDs. This identifi-
cation is handled by two global variables IDidx and modelID.
Variable IDidx has the value 0 or 1. Variable modelID is an
array with two elements sysModel and sys1Model indicating
systems 0 and 1, respectively.

Input Data Validation
For security and robustness reasons, WCDAS can handle
unintended inputs and mistakes. Although the fill-out
forms on the Web pages have greatly reduced the possibil-
ity of a user mistake compared to programming, we are
vigilant about all inputs by checking all data passed by
means of CGI. We try to be defensive in CGI programming.

June 2004 53IEEE Control Systems Magazine

Figure 10. Data passing between pages. The data in Figure 9 are passed to
the next page.

Form1

Form2

Form3

Form4

Only the Header
of the Data
Structure

Full Data Structure

Full Data
Structure

Header +
New System
Dimension
Definition

array int readMatrixDim(int num, chstrarray

name, chstrarray value) [1:8] {

array int nvar[1:8];

int i;

for (i=0; i<num; i++) {

if(strcmp(name[i],"Arow")==0)

nvar[1]= atoiCheck(value[i]);

if(strcmp(name[i],"Acol")==0)

nvar[2]= atoiCheck(value[i]);

if(strcmp(name[i],"Brow")==0)

nvar[3]= atoiCheck(value[i]);

...

}

return nvar;

}

Table 2. Read matrix dimensions from the structured
data. This function reads the dimensions of the system
matrices. The function is shared by all CGI scripts that
need the dimension information of system matrices.

June 200454 IEEE Control Systems Magazine

/* generate Form1 */

int processFirstPage(chstrarray name, chstrarray value) {

/* part I: show default example */

printFormHead("ctk_step", "Result", value); /* setup <Form> information */

...

printRunButton("Run Example");

/* part II: show user defined system input box */

printFormHead("ctk_step", "Form2", value); /* setup <Form> information */

...

}

/* generate a fill-out form ---Form3, for user to input each element for new system */

int processForm(int num, chstrarray name, chstrarray value) {

printFormHead("ctk_step", "Result", value); /* setup <Form> information */

...

}

/* calculate and show result ---- Form4, plot if necessary. */

int processResult(int num, chstrarray name, chstrarray value) {

...

}

int main() {

num =Request.getFormNameValue(name, value); // get CGI value

/* value[0] contains variable Do value */

...

/* "Page1" was passed from Form1 -- step.html */

if(strcmp(value[0],"Page1")==0) {

processFirstPage(name, value); // show Form2

}

/* "Form2" was passed from function processFirstPage() . */

else if(strcmp(value[0],"Form2")==0) {

processForm(num, name, value); // show Form3

}

/* "Result" was passed from both processFirstPage() and processForm() . */

else if(strcmp(value[0],"Result")==0) {

processResult(num, name, value); // get result, show Form4

}

...

}

Table 3. The code segments of program ctk_step.ch. This program handles Web pages Form 2 to Form 4.
Each form is processed by the corresponding function as shown below.

June 2004 55IEEE Control Systems Magazine

int printFormHead(char *chFileName, char *doWhat, chstrarray value) {

fprintf stdout << ENDPRINT

<FORM method="POST" action="/cgi-bin/chcgi/toolkit/control/$(chFileName).ch">

<INPUT type="hidden" name="Do" value="$(doWhat)">

<INPUT type="hidden" name="$(modelID[IDidx])" value="$(value[1])">

<INPUT type="hidden" name="sysTypeStr" value="$(value[2])">

<INPUT type="hidden" name="TsValue" value="$(value[3])">

ENDPRINT

return 0;

}

If an input value is not valid, an informative error message
is displayed. As discussed in the section on data struc-
tures, the values of name fields for each element in the
data structure indicate which type of data this element
should be. The values of Int, Float, and Complex corre-
spond to the int, double, and double complex data types in
C. Passed data that cannot be converted to these data
types are considered not to be valid.

Besides data type checking, additional validation
checks are implemented. For example, if a user submits a
model such that A is 3 × 3 and B is 2 × 1, the system gives
an error message indicating that the dimensions of A and
B do not match.

Application Examples
In this section, two sample applications are used to illus-
trate how control problems are solved using WCDAS.

Example 1
Consider the linear time-invariant, state-space control sys-
tems (1) and (2) with matrices

A =

−0.5 −0.8 0.53

0.8 0.12 0.7
−0.53 −0.7 −1.1

B =

 1.0

0.8
−1.5

C = [2 6.5 − 2]

D = [1.2].

To plot the step response of the system, we first click the
“Step response” hyperlink in the index page shown in
Figure 1. Then we select the system model for the state

space equation and system type of continuous time in
Figure 3. By clicking the “Continue” button, Form 2 is gen-
erated as shown in Figure 4. Next, we define a new system
with matrix dimensions of 3 × 3 for A, 3 × 1 for B, 1 × 3 for
C, and 1 × 1 for D. Next, by clicking the “Submit” button in
Figure 4, Form 3 is brought up as shown in Figure 5, and we
fill out each element with the given data. Finally, click the
“Run” button to display the result as shown in Figure 6.

Example 2
A feedback system is shown in Figure 11, where the plant
system 1 has two inputs and two outputs. The state-space
matrices of systems 1 and 2 are given by

A1 =
[−1.2 −2

2 1

]

B1 =
[−1 −1

0 2

]

C1 =
[−1.7 4

1 2

]

D1 =
[

0 1
−1 0

]

A2 =

 2 2 −0.5

2 0 0
0 1 0

B2 =

 1

0
0

C2 = [0 0.5 − 0.5]

D2 = [0].

To find the state-space matrices of the feedback system we
go to the index page shown in Figure 1 and click the

Table 4. Print header of forms. In Ch CGI, the Ch code between statements
fprintf stdout << ENDPRINT and ENDPRINT is printed out verbatim through the standard output stream.

“Feedback” hyperlink in the
“System Interconnection”
section. On the “Feedback
Interconnection” Web page,
the user selects system 1
and system 2 to be state-
space models and specifies
the dimensions of the state-
space matrices. After enter-
ing the inputs and outputs of
system 1, which are involved
in the feedback loop, click
the “Continue” button. On
the next page, the user
enters all values that are
required for computation
and clicks the “Run” button
at the bottom of the page.
The state space matrices of
the feedback system are dis-
played as shown in Figure 12.

Conclusions
A Web-based control design
and analysis system called
WCDAS has been designed

and implemented using the Ch lan-
guage environment (a C/C++ inter-
preter), CCST, and CGI toolkit. Many
commonly used functions of control
systems design and analysis have
been implemented in WCDAS. These
functions can be applied to both con-
tinuous- and discrete-time linear time-
invariant control systems modeled by
state-space equations, transfer func-
tions, or zero-pole-gain representa-
tions. WCDAS is easy to use and
maintain. The design, implementation,
and operation of the system were dis-
cussed. The user can access WCDAS
[9] without any software installation,
system configuration, or program-
ming. The user can submit system
parameters and receive the text or
graphical results through a Web
browser. This Web-based control
design and analysis system is ideal for
rapid prototyping, instructional use,
and student learning, as well as for
practical engineering applications.
The feedback from users has been
quite positive, and the convenience
and ease of use of the system have

June 200456 IEEE Control Systems Magazine

Figure 12. The state space matrices of the feedback system shown in Figure 11.
The feedback system is a MIMO system with two inputs and two outputs. The sys-
tem has five state variables.

Figure 11. A feedback system involving two subsystems. The plant subsystem is a MIMO
system. The feedback controller is a SISO system.

u1 y1

y2u2 +

–

System

System 1

System 2

A1 =

C1 =

A2 =

B1 =

D1 =

C2 =

B2 =

D2 =

–1.2 –2

2 1

–1.7 4

21

–1 –1

0 2

0 1

–1 0

2

2

2

0

0

0

1 0

0

1

0

0

00.5 –0.5

–0.5

been universally appreciated. Ch, Ch Control System
Toolkit, Ch CGI Toolkit, and WCDAS described in this arti-
cle are freely available for academic use and can be down-
loaded from the Web [12]. Users can set up WCDAS on
their own Web servers to avoid network traffic. The
WCDAS and Ch Control System Toolkit, which has similar
capabilities as the MATLAB Control System Toolbox, are
open source. The ideas and principles presented in this
article are applicable to many other areas of control sys-
tems. Users can examine the source code to extend the
system with new features such as nonlinear control, ran-
dom white noise analysis, and system identification.

References
[1] S.E. Poindexter and B.S. Heck, “Using the Web in your courses:
What can you do? What should you do?” IEEE Contr. Syst. Mag., vol. 1,
pp. 83–92, Feb. 1999.

[2] G.J.C. Copinga, M.H.G. Verhaegen, and M.J.J.M. van de Ven,
“Toward a web-based study support environment for teaching
automatic control,” IEEE Contr. Syst. Mag., vol. 20, pp. 8–19, Aug.
2000.

[3] Virtual Control Lab, 2002. Available: http://www.esr.ruhr-uni-
bochum.de/VCLab/

[4] J.C. Martinez-Garcia, G.H. Salazar-Silva, and R. Garrido, “Web-based
object-oriented control system design,” in Proc. IEEE Int. Conf. Control
Applicat., Mexico City, Mexico, Sept. 2001, pp. 111–116.

[5] The Virtual Control Lab for the ECOSSE Control HyperCourse.
Available: http://www.chemeng.ed.ac.uk/ecosse/control/course/map/
index.html

[6] J. Sanchez, F. Morilla, S. Dormido, J. Aranda, and P. Ruiperez, “Vir-
tual and remote control labs using Java: A qualitative approach,” IEEE
Contr. Syst. Mag., vol. 22, no. 2, pp. 8–10, Apr. 2002.

[7] R.P. Manchon, O.R. Garcia, R.P.N. Garcia, N.G. Aracil, and L.M.J.
Garcia, “Remote lab for control applications using MATLAB,” in Proc.
IFAC Workshop Internet-Based Control Educ., Madrid, Spain, Dec. 2001,
pp. 121–126.

[8] J.L. Diez, M. Valles, A. Valera, and J.L. Navarro, “Remote industrial
process control with MATLAB web server,” in Proc. IFAC Workshop
Internet-Based Control Educ., Madrid, Spain, Dec. 2001, pp. 139–143.

[9] Web-Based Control Design and Analysis System, Softintegration, Inc.,
2003 [Online]. Available: http://www.softintegration.com/webser-
vices/control

[10] H.H. Cheng, “Scientific computing in the Ch programming lan-
guage,” Sci. Prog., vol. 2, no. 3, pp. 49–75, 1993.

[11] Ch Language Environment User’s Guide, Softintegration, Inc., 2003
[Online]. Available: http://www.softintegration.com

[12] Ch Control System Toolkit User’s Guide, Softintegration, Inc., 2003
[Online]. Available: http://www.softintegration.com/products/
toolkit/control

[13] Y. Zhu, B. Chen, and H.H. Cheng, “An object-based software
package for interactive control system design and analysis,” ASME
Trans. J. Computing Inform. Sci. Eng., vol. 3, no. 4, pp. 366–371, Dec.
2003.

[14] International Standard: Programming Languages—C, ISO/IEC,
1990.

[15] International Standard: Programming Languages—C, ISO/IEC,
1999.

[16] The Ch Language Environment CGI ToolKit User’s Guide, Softinte-
gration, Inc., 2003 [Online]. Available: http://www.softintegration
.com/products/toolkit/cgi/

[17] Embedded Ch, Softintegration, Inc., 2003 [Online]. Available: http://
www.softintegration.com/products/sdk/embedch/

[18] Control System Toolbox User’s Guide. Natick, MA: MathWorks,
1998.

Qingcang Yu received his M.S. degree in electrical engi-
neering from Zhejiang University, China, in 1990. From
2001 to 2003, he was a visiting scholar in the Department of
Mechanical and Aeronautical Engineering, University of
California, Davis. He is currently an associate professor in
the Information and Electronics Department at the Zhe-
jiang Institute of Science and Technology, China. He is also
a Ph.D. candidate in computer analysis and comprehen-
sion at Zhejiang University. His research interests include
Ch, computer-aided design and analysis, image processing
and analysis, stereo vision, and mobile robot navigation.

Bo Chen received her M.S. degree in electrical engineering
from the Zhejiang Institute of Science and Technology
(ZIST) in China and joined the Department of Electrical
Engineering at ZIST. She was an associate professor and
the vice chair of the Department of Electrical Engineering
when she left ZIST in 1999 and began working as a visiting
scholar in the Integration Engineering Laboratory at the
University of California, Davis. Currently, she is a Ph.D.
candidate in the department of Mechanical and Aeronauti-
cal Engineering at the University of California, Davis. Her
research focuses on computer-aided design and analysis,
real-time and embedded control, multiagent systems, and
Web technologies.

Harry H. Cheng (hhcheng@ucdavis.edu) is a profes-
sor and director of the Integration Engineering Labora-
tory in the department of Mechanical and Aeronautical
Engineering at the University of California, Davis. His
current research interests include engineering software
design, Web technology and its applications in design
and manufacturing, open-architecture mechatronic sys-
tem integration, and intelligent transportation systems.
He is the chief architect of Ch, a C/C++ interpreter for
script computing. He has published over 90 technical
papers and has one U.S. patent. He received his M.S.
degree in mathematics in 1986 and his Ph.D. degree in
mechanical engineering in 1989 from the University of
Illinois at Chicago. He can be contacted at the Integra-
tion Engineering Laboratory, Department of Mechanical
and Aeronautical Engineering, University of California.
Davis, CA 95616 USA.

June 2004 57IEEE Control Systems Magazine

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

