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a b s t r a c t

This paper studies optimal control of mobile monitoring agents in artificial-immune-system-based

(AIS-based) monitoring networks. In AIS-based structural health monitoring (SHM) networks, the active

structural health monitoring is performed by a group of mobile monitoring agents equipped with damage

pattern recognition algorithms. The mobile monitoring agents mimic immune cells in the natural

immune system and patrol a structure to detect damage patterns using their receptors (feature vectors),

damage pattern recognition algorithms, and the dynamic response data of the structure. The optimal

control of mobile monitoring agents includes agent generation and distribution. The generation of mobile

monitoring agents is optimized to minimize the response time for the mobile monitoring agents to

diagnose structural damage in a sub-network and maximize the average affinity of monitoring agents0

receptors to the damaged sensor data feature vector. The objective functions for distributing mobile

monitoring agents are to increase the detection probability and extend network life by balancing energy

consumption of sensor nodes in the network. The presented optimization algorithms are developed using

multi-objective genetic algorithms. The impact of the algorithm parameters on the performance of the

algorithm is also investigated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Monitoring networks have gained wide applications in protect-
ing engineered systems and natural environment from unexpected
failures. Due to ever-increasing complexity of systems and unpre-
dictable working conditions, the monitoring systems will need to
perform tasks with high quality, adaptability, and autonomy. To
meet this requirement, a monitoring paradigm based on artificial
immune system (AIS) concept has been proposed (Chen, 2010). In
this paradigm, mobile monitoring agents mimic immune cells (such
as B cells) in the natural immune system for the anomaly detection
and pattern recognition in distributed monitoring systems. Mobile
monitoring agents interact locally with monitoring environment,
and respond to emerging problems through simulated immune
responses. The monitoring tasks are managed automatically by a
mobile agent-based network middleware. This bio-inspired mon-
itoring paradigm has been applied to structural health monitoring
networks.

The main features of the immune system include adaptive
immune response to the invading pathogens and pattern recogni-
tion capabilities. When a pathogen invades a host, the host mounts
ll rights reserved.
a response that occurs at several levels of biological organization,
including genetic, molecular, cellular, tissue, and system level.
A number of host cells are called into action, such as B cells, T cells,
and antigen presenting cells (Neal and Trapnell, 2007). The
adaptive immune response achieves two goals: the number of B
cells that are capable of responding to a particular antigen are
multiplied through clonal expansion and these new generated
immune cells are able to produce a large number of antibodies for
binding to the intruders (Delves et al., 2006).

In AIS-based monitoring networks, a mobile monitoring agent is
selected for cloning when it detects damage in a sensor unit. Multiple
copies of this type of monitoring agents will be created. As a result, the
type and amount of mobile monitoring agents are adapted to damage
patterns detected in a structure. This paper presents multi-objective
optimization algorithms for the optimal control of mobile monitoring
agents in artificial-immune-system-based monitoring networks. To
minimize the response time for the generated monitoring agents to
diagnose structural damage and maximize the average affinity of
monitoring agents0 receptors to the damaged sensor data feature
vector, a multi-objective genetic algorithm is developed to find
appropriate number of agent clones and the mutation value for the
cloned monitoring agents. The newly generated monitoring agents
are sent to sensor nodes close to the location where the damage is
detected for further damage diagnosis. The distribution of mobile
monitoring agents takes sensor data feature vector and the remaining
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battery capacity of sensor nodes into consideration to increase the
detection probability and extend the lifetime of the monitoring
network.

Genetic algorithms (GA) have been widely applied to many
optimization problems. In a sensor network for agriculture applica-
tion (Ferentinos and Tsiligiridis, 2007), genetic algorithm is adopted
to design wireless sensor network topologies by optimizing para-
meters which are related to the power consumption of the sensors.
Parameters of network connectivity and application requirements
are also considered so that an integrated network is designed.
Khanna et al. (2006) design a reduced-complexity genetic algorithm
to minimize the power consumption of the sensor system while
maximizing the sensing coverage. The genetic algorithm runs
periodically to assign functions to the randomly deployed sensor
nodes. In Hussain et al. (2007), a genetic algorithm is applied for
data dissemination by creating energy-efficient clusters. The
authors propose an intelligent hierarchical clustering protocol,
which has better performance than the traditional cluster-based
protocols. Maslov and Gertner (2006) introduce basic and advanced
genetic algorithm implementations and applications in information
fusion. Genetic algorithm is also employed in the work of node
deployment for wireless sensor networks (Bhondekar et al., 2009)
and the GA system decides which sensor nodes should be active and
which sensor node should work as the cluster head in the network.
To maximize network lifetime, a regression model (Qinru et al.,
2006) is applied to find out an energy-efficient configuration for the
genetic algorithm to optimize resource allocation.

The rest of the paper is organized as follows. Section 2 introduces
an artificial-immune-system-based structural health monitoring
network. Section 3 discusses the pattern recognition-based damage
detection and classification. Section 4 presents multi-objective
genetic algorithms for the optimal control of agent generation
and distribution, as well as the impact of algorithm parameters on
the system performance. Section 5 concludes the presented work.
2. An AIS-based structural health monitoring network

2.1. AIS-based structural health monitoring

The framework of an AIS-based structural health monitoring
network consists of (a) an agent-based network middleware (mobile
agent system) (Chen et al., 2006; Chen and Liu, 2010) to support the
generation, execution, migration of mobile monitoring agents;
(b) clonal selection algorithm for the cloning of mobile monitoring
agents who detect structural damage in distributed sensor units;
Fig. 1. An AIS-based SH
(c) knowledge base for keeping updated representative feature vectors
(memory cells) for normal and damage patterns and performing
confirmation of damage detected by a mobile monitoring agent;
(d) agent interaction protocols, for example, agent communication
protocols amongst mobile monitoring agents, knowledge-base agent,
and the clonal selection agent for cloning a mobile monitoring agent.
Figure 1 shows a small scale AIS-based SHM network deployed on a
beam structure. The network consists of three sensor units, a knowl-
edge base, and a network component for clonal selection. A mobile
agent system is installed locally in each network component. When a
mobile monitoring agent detects damage in a sensor unit (for example,
in the middle sensor unit in Fig. 1), it communicates with the
knowledge-base agent to confirm the damage. If the damage is
confirmed, the mobile monitoring agent sends a request to the clonal
selection component for cloning. The cloned mobile monitoring agents
are sent to the sensor units close to the location where the damage is
detected to find out damage affected area.

To increase damage detection probability, reduce response
time, and extend network lifespan, this work studies multi-
objective agent control in AIS-based monitoring networks. The
optimal control of mobile monitoring agents includes the optimi-
zation of agent generation and agent distribution. In agent
generation control, two-objective functions are defined to mini-
mize the response time for a group of mobile monitoring agents to
perform damage diagnosis in a sub-network and maximize the
average affinity level of the generated mobile monitoring agents
with the sensor data feature vector. A multi-objective optimization
algorithm is adopted to find the appropriate values of clonal rate
and mutation value for the control of agent generation. In agent
distribution control, a genetic algorithm is employed to search a
best candidate sensor node for the deployment of a mobile
monitoring agent to increase the damage detection probability
and extend the network lifetime by applying a fitness punishment
strategy to balance the energy consumption among sensor nodes
over a network.

This section introduces a network framework consisting of
agent-based network middleware and high computational power
sensor nodes to support the agent management and distributed
damage diagnosis.
2.2. High computational power sensor node

A high computational power sensor node is designed for the
distributed damage diagnosis which requires intensive numerical
computation. The high computational power of the sensor node is
M sensor network.
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achieved by the integration of sensor node hardware computing
resources and the embedded numerical computing software
packages. The sensor node consists of three circuit boards: a SHM
sensor board, Gumstix embedded computer, and a WiFi transmis-
sion board. The Gumstix embedded computer is one of the world0s
smallest full function miniature computers. The size of the sensor
node is about 4 (in.)�2.4 (in.)�0.65 (in.). The sensor board is
designed and fabricated by our research group to meet the structural
health monitoring sensing requirement (Chen and Wang, 2008). The
sensor board connects to a numbers of sensors, including accel-
erometers, strain gauges, humidity, and temperature sensors.

A numerical library module is integrated in the Gumstix-based
sensor nodes. The numerical library module provides computa-
tional building blocks to construct SHM analysis algorithms. It
contains CLAPACK library and a Utility Function Library. The
CLAPACK library is a C version of LAPACK library, which provides
routines for solving systems of linear equations, linear least-
squares problems, eigenvalue problems, and singular value pro-
blems. The utility functions in the Utility Function Library are
designed to perform subtasks of SHM analysis or numerical
computation that is not available in CLAPACK library, for example,
Fast Fourier Transform. The existing open source numeric libraries
such as Numerical Recipes in C and the GNU Scientific Library (GSL)
can be used to implement these utility functions. The numerical
accuracy of these open source libraries is comparable with
commercial software packages, such as Matlab.

2.3. Mobile agent-based sensor network middleware

A mobile agent is a software agent that is capable of migrating
from one node to another in a network and resumes the execution in
the new node. The migration and execution of mobile agents are
supported by a mobile agent system. We adopt Mobile-C as the
mobile agent system (Chen et al., 2006, 2009, 2008) in AIS-based
monitoring networks. The main components of Mobile-C include
agent management system, agent communication channel, direc-
tory facilitator, agent security manager, and agent execution engine.
The effectiveness of Mobile-C has been verified in a number of
systems, including a retrofitted automation work cell (Nestinger
et al., 2010), a real-time traffic detection system (Chen et al., 2009), a
mobile robotic system (Chou et al., 2007), and a structural health
monitoring network (Chen and Liu, 2010). Mobile-C in sensor nodes
can host both stationary agents and mobile agents. Stationary
agents are those staying in the sensor nodes where they are created,
such as knowledge-base agent and the clonal selection agent.
Mobile agents are those created during the system operation for
monitoring purpose. In a mobile agent-based monitoring network, a
remote user can dispatch mobile monitoring agents to sensor nodes
in the network. These monitoring agents equip with data analysis
and damage diagnosis algorithms and can roam over the network
and perform damage diagnosis at sensor nodes where they visit.
3. Pattern recognition-based damage detection and
classification

3.1. Feature extraction

The structural damage patterns are represented by feature vectors
extracted from the dynamic response data of a structure (Chen and
Zang, 2009). The feature vector of a time series sensor data is formed
by coefficients of an auto-regressive (AR) model of the time series. To
reduce environmental effects, sensor data Z are standardized by

yij ¼
zij�mi

si
, j¼ 1,2,. . .,n,
where mi and si are the mean and standard deviation of the time
series z

,
i. To extract feature vectors for a local area, time series sensor

data sets from multiple sensors are reduced to lower dimensions by
the Principal Component Analysis (PCA) method. The compressed
time series X is then fitted to an auto-regressive (AR) model of order
p as

xk ¼
Xp

i ¼ 1

aixk�iþrk, k¼ pþ1,. . .,n ð1Þ

where ai, i¼1, 2, y, p are the coefficients of the AR model; the vector
a¼(a1, a2, y, ap)T, a collection of the AR coefficients, is selected as
the feature vector of the sensor data Z.

3.2. Damage detection using memory cells

In artificial immune damage pattern recognition, each damage
pattern is represented by a set of representative feature vectors
(Chen and Zang, 2009). These representative feature vectors are
called memory cells for the corresponding damage pattern. Each
mobile monitoring agent carries memory cells during distributed
damage diagnosis. In a structural damage detection test (Chen,
2010), a scaled steel bridge was used. Sensor nodes and acceler-
ometers were mounted on the beams along the bridge, six sensor
nodes each side. Each sensor node was located about 1 meter away
from its neighbor sensor nodes. Structural damage was simulated
by removing one cross member at the center of the bridge. When a
mobile monitoring agent arrives at a sensor node, it reads the
acceleration data from sensor node and builds an AR model for
the sensor data. Based on the AR coefficients, the feature vector of
the sensor data is formed, and the Euclidean distances from sensor
data feature vector to the memory cells of the monitoring agent
are calculated. Classification algorithms such as k-nearest neigh-
bor (kNN) algorithm can be used to detect if damage is presented
in the structure. For a given sensor data feature vector x, the
nearest neighbor rule is summarized as follows (Theodoridis and
Koutroumbas, 2008). (1) Out of the N memory cell feature vectors,
identify the k-nearest neighbors to the sensor data feature vector x.
The number of k is general not to be a multiple of the number of
classes M. (2) Out of these k samples, identify the number of vectors
ki that belong to classoi, i¼ 1, 2, . . ., M,

P
iki ¼ k. (3) Assign x to the

class oi with the maximum number ki of samples.
4. Optimization of agent generation and distribution

Multi-objective optimization method is used to control agent
generation and distribution in this study. A multi-objective opti-
mization problem has a number of objective functions that need to
be minimized or maximized under a number of constraints. The
general form of a multi-objective optimization is described below
(Deb, 2001):

Minimize=maximize fmðXÞ, m¼ 1,2,. . .,M;

subject to gjðXÞZ0, j¼ 1,2,. . .,J;

hkðXÞ ¼ 0, k¼ 1,2,. . .,K;

xi
ðLÞrxirxi

ðUÞ, i¼ 1,2,. . .,n: ð2Þ

where fm(x) are M number of objective functions; gj(x) and hk(x)
are inequality and equality constrains; and the n solutions X ¼

ðx1, x2, . . ., xnÞ
T are restricted by lower and upper boundaries xi

(L)

and xi
(U).

There are a number of computational techniques and methods
for solving optimization problems, such as hill climbing (Russell
and Norvig, 2003), ant colony optimization (ACO) (Dorigo et al.,
1996), particle swarm optimization (PSO) (Kennedy and Eberhart,



W. Liu, B. Chen / Journal of Network and Computer Applications 34 (2011) 1818–1826 1821
1995; Poli, 2008), and genetic algorithms (GAs) (Goldberg, 1989).
Hill climbing is a relatively simple optimization technique for
searching a local optimal solution. Hill climbing works in some
situations although more advanced optimization algorithms may
result in better solutions. In Hill climbing algorithm, an initial
solution is randomly chosen. The algorithm then searches the
neighborhood of the current solution. If the neighborhood solution
is better than the current solution, the neighborhood solution is
used to substitute the current solution. This process is repeated
until no more improvement can be made to the current solution.
Ant colony optimization is inspired by the behavior of ants seeking
a path between their colony and a source of food. Good solutions
are found through the cooperation of the artificial ants. ACO is
typically applied for problems of searching good paths through
graphs, such as the traveling salesman problem and packet routing
in networks. Particle swarm optimization is initially developed
based on the social behavior of bird flocks. PSO optimizes a problem
by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathe-
matical formula. The movements of the particles are guided by the
best found positions in the search-space. PSO method performs
well for some continuous optimization problems. Genetic algo-
rithm is a population-based optimization algorithm. It maintains a
population of candidate solutions. Due to its population-based
nature, it belongs to the family of global optimization algorithms.
Multiple candidate solutions in each iteration and global optimiza-
tion characteristics of the genetic algorithm make it appropriate for
our application since we can apply fitness punishment strategies on
candidate solutions and find global optimal solutions.

The basic idea of genetic algorithm is from evolutionary theory:
species have different capabilities of living in the nature. In genetic
algorithm (Goldberg, 1989), each solution will be represented in
the form of strings. A string is called chromosome and consists of a
number of digits, which represents one or more features of the
solution. There should be an encoding strategy working well
enough so the chromosome is able to carry all the features of
the solution. Actually, one solution is corresponding to one type of
chromosome. A group of chromosomes are called population which
is usually randomly initialized. After a number of generations of
evolution, a single solution will dominate the other solutions. Each
generation of chromosomes is created through three processes:
selection, crossover, and mutation. There exist a number of multi-
objective optimization implementations. A fast and elitist multi-
objective genetic algorithm, NSGA-II (Deb et al., 2002), is one of
those algorithms which has been applied to many applications.
NSGA-II employs non-dominated sorting incorporating elitism. The
goal of NSGA-II algorithm is to find a population of solutions that
are as close as possible to the Pareto-optimal front and as diverse as
possible. The NSGA-II algorithm consists of four steps. The first step
combines parent and offspring, and performs a non-dominated
Fig. 2. Artificial imm
sorting to identify different front for each solution. The first front is
a non-dominated set in the current population and the second front
is dominated by the individuals in the first front, and so on. In the
second and third steps, a new parent set is formed based on the rank
of front level and the crowding distances. The solutions with higher
order of front levels will firstly be selected into new parent set. The
selection of solutions at same front level is based on crowding
distances. The solutions with large crowding distances will be
included to increase the diversity of the solution population. In the
fourth step, the selected parents generate offspring by using the
crowed tournament selection, crossover, and mutation operations.

4.1. Optimization of agent generation in artificial clonal selection

process

In AIS-based monitoring networks, adaptive immune response
is a mechanism to manage the amount and type of monitoring
agents through clonal selection. Fig. 2 shows the clonal selection
process in which the activated mobile monitoring agent is cloned
and mutated. The cloned mobile monitoring agents are sent to
sensor nodes close to the location where the damage is detected to
find out the damage affected area. Assume that the local commu-
nication uses Zigbee and the long distance communication uses
WiFi. The cloned mobile monitoring agents will visit N number of
sensor nodes for further damage diagnosis.

The number of cloned monitoring agents, n, depends on the
clonal rate CR and the affinity between the feature vector of the
mobile monitoring agent and the sensor data feature vector where
the damage is detected. The number of cloned agents can be
calculated by

n¼ roundðCR�aff ðb,aÞÞ ð3Þ

where the CR is an integer value used to control the number of agent
clones allowed for the activated mobile monitoring agent. Let
maUf ¼ b¼ ðb1,b2,. . .,bpÞ

T and sd � f¼a¼(a1,a2,y,ap)T denote the
feature vector of a mobile monitoring agent and the feature vector
of the sensor data, respectively. The affinity between the feature
vector of the mobile monitoring agent and the sensor data feature
vector is defined as

aff ðb,aÞ ¼ 1�
1

2
� distðb,aÞ ð4Þ

where dist(b,a) is the Euclidian distance between vectors a and b as

distðb,aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i ¼ 1

ðbi�aiÞ
2

vuut ð5Þ

The cloned monitoring agents are mutated to increase the
diversity of the generated mobile monitoring agents. The mutation
is performed by mutating the feature vectors of the cloned
une response.
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Fig. 4. Decision space.
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monitoring agents. Let ðmamutatedÞ:f ¼ g¼ ðg1,g2,. . .,gpÞ
T denote the

feature vector of a mutated monitoring agent. The mutation is
performed as

g¼ bþMV�ðf1,f2,. . .,fPÞ
T

ð6Þ

where MV is the mutation value and fi is a normal random value
within the range of [�1, 1].

The goal of the presented multi-objective optimization algo-
rithm is to find appropriate values of CR and MV with following
objective functions.

1. Minimize response time: the response time is defined as the
time needed for the cloned mobile monitoring agents to further
diagnose structural damage at the N number of sensor nodes close
to the location where the damage is detected. The response time
includes both mobile agent transmitting time and damage diag-
nosis computational time:

T ¼ nSTwþTcþ
ðN�N%nÞ

n
�1

� �
�STzþ

ðN�N%nÞ

n
�1

� �
�Tcþ

N%n

n

� �
� STzþTc½ �þTga

ð7Þ

where Tc is the computational time for a mobile agent to execute
damage diagnosis program in a sensor node. Tw and Tz are the time
needed for transmitting one byte of data in WiFi and Zigbee networks.
Tga is the time needed for the genetic algorithm to find non-dominated
solutions. S is the size of a mobile agent in bytes. The number of cloned
mobile monitoring agent is n. Modulus function N%n finds the
remainder of the division N/n. Since noN, n number of cloned agents
needs to move ½ððN�N%nÞ=nÞ�1� times in the Zigbee network and part
of the cloned agents needs one more move to cover N number of sensor
nodes.

2. Maximize average affinity level (minimize average distance)
among the feature vectors of cloned mobile monitoring agents and
the sensor data feature vector:

D¼
1

n

Xn

i ¼ 1

distððmai,mutatedÞUf , sdUf Þ ¼
1

n

Xn

i ¼ 1

distðgi,aÞ ð8Þ

where dist((mai,mutated) � f, sd � f) is the Euclidean distance between
the feature vectors of the ith cloned mobile monitoring agent and
the sensor data feature vector.

3. The optimization is subjected to following constraints:

nrN; 0oCRr30; 0oMV o1 ð9Þ

The range of CR is determined from previous research results.
When the value of CR is less than 30, the number of memory cells is
within a reasonable range.

4.2. Non-dominated solutions for two defined objective functions

To find out non-dominated solutions for defined objective func-
tions, the fast and elitist multi-objective genetic algorithm, NSGA-II, is
used for the simulation of this optimization problem. The values of
simulation parameters are listed in Table 1. The non-dominated
Table 1
Simulation parameters.

Simulation parameters

Population size

Number of generations

Crossover probability (CP)

Mutation probability (MP)

Tc – computational time for a mobile monitoring agent to execute damage diagnosis

Tw – time needed for transmitting one byte of data in WiFi network

Tz – time needed for transmitting one byte of data in Zigbee network

Tga – time needed for the genetic algorithm to find non-dominated solutions

The size of a mobile monitoring agent in bytes, S
solutions found by the NSGA-II algorithm are shown in Fig. 3. The
corresponding solution values form a decision space as shown in Fig. 4.
From the decision space, we can see that when the mutation value MV

is high, the value of clonal rate CR is relative small. When the MV value is
small, the CR value is high.

To find out good solutions for the system, the impact of
algorithm parameters on the system performance is investigated.
Two criteria are usually used to evaluate the goodness of solutions
(Deb, 2001): (1) the non-dominant solutions should be as close to
the Pareto front as possible and (2) the non-dominated solutions
are as diverse as possible. The diversity helps to achieve more
uniform distribution of non-dominated solutions along the Pareto
front. Fig. 5 shows that non-dominated solutions move towards the
origin as the number of generation increases. This means that the
larger the number of generations is, the closer the non-dominated
solutions to the Pareto-optimal solutions are. The distance between
consecutive solutions can be used to evaluate how well the
solutions are uniformly spaced (Deb, 2001). The spacing metric S
Value Unit

40

2000

0.6

0.5

program 55 s

0.727 ms

0.032 ms

4 s

1900 byte



Fig. 5. Final solutions with different number of generations.

Fig. 6. Spacing of non-dominated solutions vs. number of generations.

Fig. 7. Final solutions when mutation probability is 0.2.

Fig. 9. Agent distribution based on affinity and remaining battery capacity of

sensor nodes.

Fig. 8. Final solutions when mutation probability is 0.7.
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is defined as follows:

S¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9Q9

X9Q9

i ¼ 1

ðdi�dÞ2

vuut
ð10Þ

where Q is the number of non-dominated solutions, di ¼minkAQ4ka iPM
m ¼ 1 9f

i
m�f k

m9 and d is the mean value of the above distance measure

d¼
P9Q9

i ¼ 1 di=9Q9. In the equation of di, M represents the number of

objective functions. In our application, f1 represents response time and
f2 represents average affinity level.
A smaller value of S indicates more uniform spacing of non-
dominated solutions. Fig. 6 shows that the spacing decreases when
the number of generations increases. When the number of gen-
erations is above 1200, the value of S remains at similar level. In
addition to number of generations, the mutation probability of the
genetic algorithm also impacts the spacing of the solutions.
Comparing with Figs. 7 and 8, the larger value of the mutation
probability has better solution spacing. This is because the larger
mutation probability improves the diversity of solutions.

4.3. Optimization of agent distribution

Optimization of agent distribution is to find out which sensor
node is the best candidate for a mobile monitoring agent to visit so
that the damage detection probability can be increased and
monitoring network lifetime can be extended. Due to energy
constraints, each sensor node has its own lifespan. The remaining
battery capacity in each sensor node impacts the lifetime of the
whole monitoring network. The goal of the optimization algorithm
is to distribute mobile monitoring agents to the node where they
are needed for damage detection and prolong the network lifetime.

Fig. 9 shows the basic concept of the presented GA algorithm for
optimizing agent distribution. Assume that there is more than one
sensor node in the region where the abnormal condition is
occurred. Based on the fitness values (the distances amongst the
sensor data feature vectors and the memory cells of a mobile
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monitoring agent), the GA algorithm determines at which sensor
node the mobile agent has the highest probability to detect
anomaly. The algorithm also takes the remaining battery capacity
of each sensor node into consideration when making the agent
distribution decision. Sensor nodes with low remaining battery
capacities have low privilege to accept a mobile monitoring agent.
This distribution strategy extends the overall lifespan of a mon-
itoring network.

4.3.1. Battery energy model

For battery-powered sensor nodes, the remaining battery capacity
of a sensor node can be calculated by Eq. (11) (Peng and Pedram,
2006):

RC ¼ SOC � SOH � DC ð11Þ

where SOC (state of charge) indicates how much energy left in a
battery; SOH (state of health) is the ratio of the full charge capacity of a
battery to its design capacity (DC). The equations for calculating SOC,

SOH, and DC are shown in Eqs. (12), (15), and (16) (Peng and Pedram,
2006). The SOC is defined as

SOC ¼ 1�

1
b1
� 1

b1
�SOHb2 � DCb2

� �
exp Dvm�DvÞ

l

� �h i 1
b2

SOH � DC
ð12Þ

where Dv¼VOCinit�v and Dvm¼VOCinit�vcut�off, VOCinit indicates
initial open-circuit voltage; vcut-off indicates a voltage threshold below
which the end of discharge is considered being reached; l¼(2RT)/
(nF), where R indicates gas constant; T indicates current temperature;
n indicates number of electronics transferred; and F indicates
Faraday0s constant; In Eq. (12), b1 and b2 are functions of discharge
rate and temperature, respectively (Peng and Pedram, 2006),

b1ði,TÞ ¼ d11 exp
d12

T

	 

þd13 ð13Þ

b2ði,TÞ ¼
d21

Tþd22

	 

þd23 ð14Þ

where djkðiÞ ¼
P4

z ¼ 0 mzðdjkÞUiz j¼1,2, k¼1,2,3, and mz(djk) are con-
stant coefficients based on curve fitting. The values of SOH and DC can
Fig. 10. Genetic algorithm for sear
be calculated by

SOH¼
1�expððrn i�DvmÞ=lÞ
1�expððr0 i�DvmÞ=lÞ

� �1=b2

ð15Þ

DC ¼
1

b1
1�exp

r0Ui�Dvm

l

	 
� �� �1=b2

ð16Þ

where rn¼r(i,T,nc,T 0) represents the effect of the Ohmic overpotential
and electrode reaction potential when the discharged current is
constant; i indicates current; T indicates the current temperature;
T 0 indicates the temperature that the battery has experienced in
previous cycle; and nc is the number of electrons transferred during
the process of battery charging; if nc¼0, rn¼r0.

Based on above equations, the remaining capacity of a battery
can be calculated with three measurable variables: battery voltage
v, current i, and temperature T.
4.3.2. Genetic algorithm for searching agent destination

A GA-based algorithm is developed to dynamically search a
destination sensor node for a mobile monitoring agent based on the
remaining battery capacity of sensor nodes and the sensor data
feature vectors. The selected sensor node satisfies two criteria:
(1) the Euclidean distance between the sensor data feature vector
and the memory cells of the mobile monitoring agent is small;
(2) the remaining battery capacity of the sensor node is higher than
a pre-defined threshold.

Fig. 10 shows a GA-based algorithm for a mobile monitoring
agent to search a candidate sensor node to visit. The sensor data
feature vectors and the remaining battery capacities of sensor
nodes are used to choose an appropriate sensor node. The output of
the genetic algorithm is the ID of selected sensor node. Sensor IDs
are encoded into chromosomes in binary format. In the experi-
mentation discussed in this paper, 8 digits of binary code are used
to represent the sensor IDs. Initial population with 10 individuals is
randomly picked up in the sensor node population pool. Each
individual is an 8-bit binary string. The fitness value of the
individuals is calculated based on the Euclidian distance between
ching a suitable sensor node.



Fig. 12. Good solution ratio vs. mutation probability.

W. Liu, B. Chen / Journal of Network and Computer Applications 34 (2011) 1818–1826 1825
the sensor data feature vector and the memory cell feature vector of
a mobile monitoring agent.

Let bi ¼ ðbi1,bi2,. . .,bipÞ
T denote the feature vector of the ith

mobile monitoring agent and aj ¼ ðaj1,aj2,. . .,ajpÞ
T the sensor data

feature vector of the jth sensor node. The Euclidian distance
between these two feature vectors can be calculated by

distðbi�ajÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi1�aj1Þ

2
þðbi2�aj2Þ

2
þ � � � þðbip�ajpÞ

2
q

ð17Þ

Based on fitness values, several sensor individuals with high fitness
to the memory cell of the mobile monitoring agent are selected. The
selected sensor individuals subject to two GA operations: crossover
and mutation, to generate offspring of the parent generation. The
impact of crossover probability and mutation probability on the
number of iterations to find a destination sensor node and the ratio
of good solutions is discussed later in this paper.

To balance energy consumption among sensor nodes in the
monitoring network, a fitness punishment strategy is designed in
the genetic algorithm. If a sensor node whose remaining battery
capacity is below a pre-defined threshold, the fitness value of the
sensor node is reduced by multiplying a penalty factor. This
punishment greatly impacts the fitness value of the sensor node;
as a result, the sensor node will most likely be eliminated from the
population of the next generation.
Fig. 13. Average iterations based on crossover probability and mutation probability.
4.3.3. Effects of fitness punishment strategy on the network lifetime

To analyze the impact of the fitness punishment strategy on the
network lifetime, a simulation is performed to find out appropriate
penalty factor values and remaining energy threshold. The network
lifetime is defined as the time duration from the beginning of the
operation to the moment when one of the sensor node’s remaining
energy capacity is equal to or less than the defined energy threshold.
Assume that 255 sensor nodes are deployed evenly in a 15�15 m2

area. Each sensor node collects measurement data from sensors. The
sensor network periodically dispatches mobile monitoring agents to
the network for distributed anomaly detection. The total energy
consumption of the network includes sensing energy and mobile
agent deployment energy-Ea. The energy consumed for deploying a
mobile agent consists of mobile agent transmitting energy and
computation energy. In our monitoring network, the energy con-
sumption of transmitting a mobile agent to a sensor node and
performing damage diagnosis is about 115 times of energy con-
sumption for collecting 2000 data bytes of acceleration data. Since
the agent deployment energy is much higher than sensing energy,
agent deployment energy consumption is a major factor considered
in the simulation. Fig. 11 shows the percentage of network lifetime
extension vs. the values of penalty factor and the energy threshold for
applying fitness punishment.
Fig. 11. Percentage of lifetime extension vs. penalty factor values.
4.3.4. The impact of crossover probability and mutation probability

on the good solution ratio and number of iterations

The presented GA algorithm is implemented by the Genetic
Algorithm Toolbox for Matlab from University of Sheffield. To
investigate the impact of parameters on the performance of the
algorithm, different values of mutation probability and crossover
probability are used to test the ratio of good solutions and the
convergence speed. Fig. 12 shows the impact of the value of
mutation probability on the good solution ratio with a fixed
crossover probability. The horizontal axis represents the number
of generations and the vertical axis represents the good solution
ratio. Good solution ratio is defined as the ratio of the number of
good solutions to the size of population. The crossover probability
used in this test is equal to 0.7. From Fig. 12, we can see that the
ratio of good solutions increases quickly in the first 30 generations,
but, no significant change after that.

Fig. 13 shows the average number of iterations the genetic
algorithm takes to find the best candidate sensor node. The horizontal
axis represents the mutation probability and the vertical axis repre-
sents the average number of iterations from 12 trials. The curves with
different colors are corresponding to different values of crossover
probability. From Fig. 13, we can see that the number of iterations
increases significantly when the mutation probability varies from 0.04
to 0.06. For each crossover probability, the average number of
iterations increases as the mutation probability increases.
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5. Conclusions

Multi-objective optimization algorithms for the control of mobile
monitoring agents in artificial-immune-system-based monitoring
networks are presented in this paper. The developed algorithms
optimize agent generation and distribution by increasing damage
detection probability, reducing response time, and extending net-
work lifespan. The amount and type of generated monitoring agents
are tuned to the detected damage. The selected sensor node for a
mobile monitoring agent to visit is based on the affinity between the
sensor data feature vector and the memory cells of the monitoring
agent. In addition, the remaining battery capacity of a sensor node
will impact the selection decision. A sensor node with high remaining
battery capacity has high probability to receive a mobile monitoring
agent. This selection strategy not only ensures the detection effec-
tiveness, but also balances the remaining battery capacity of sensor
nodes across the monitoring network. The simulation results show
that the number of generations affects the goodness and the spacing
of non-dominated solutions. In addition, the crossover probability
and the mutation probability will also impact the performance of the
algorithm.
Acknowledgements

This research is supported by the National Science Foundation
under Grant #: 1049294 and Michigan Tech Research Excellence
Fund. Any opinions, findings, and conclusions expressed in this
material are those of the authors and do not necessarily reflect the
views of the sponsoring institutions.

References

Bhondekar AP, Vig R, Singla ML, Ghanshyam C, Kapur P. Genetic algorithm based
node placement methodology for wireless sensor networks. International
multiconference of engineers and computer scientists 2009 (IMECS 2009).
Hong Kong, China: International Association of Engineers; 2009. p. 106–12.

Chen B. Agent-based artificial immune system approach for adaptive damage
detection in monitoring networks. Journal of Network and Computer Applica-
tions 2010;33:633–45.

Chen B, Cheng HH, Palen J. Mobile-C: a mobile agent platform for mobile C/C++
agents. Software-Practice & Experience 2006;36:1711–33.

Chen B, Cheng HH, Palen J. Integrating mobile agent technology with multi-agent
systems for distributed traffic detection and management systems. Transporta-
tion Research Part C: Emerging Technologies. 2009;17:1–10.
Chen B, Linz DD, Cheng HH. XML-based agent communication, migration and
computation in mobile agent systems. Journal of Systems and Software
2008;81:1364–76.

Chen B, Liu W. Mobile agent computing paradigm for building a flexible structural
health monitoring sensor network. Computer-Aided Civil and Infrastructure
Engineering 2010;25:504–16.

Chen B, Wang J. Design of a multi-modal and high computation power wireless
sensor node for structural health monitoring. 2008 IEEE/ASME international
conference on mechatronic and embedded systems and applications. Beijing,
China, 2008.

Chen B, Zang C. Artificial immune pattern recognition for structure damage
classification. Computers & Structures 2009;87:1394–407.

Chou Y-C, Ko D, Cheng HH. Embeddable mobile-C for runtime support of code
mobility in multi-agent systems. International design engineering technical
conferences & computers and information in engineering conference. Las Vegas,
Nevada: ASME; 2007.

Deb K. Multi-objective optimization using evolutionary algorithms. Wiley; 2001.
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
2002;6:182–97.

Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt0s essential immunology. 11th ed.
Blackwell Publishing; 2006.

Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part
B-Cybernetics. 1996;26:29–41.

Ferentinos KP, Tsiligiridis TA. Adaptive design optimization of wireless sensor
networks using genetic algorithms. Computer Networks 2007;51:1031–51.

Goldberg DE. Genetic algorithms in search, optimization and machine learning.
Addison Wesley Longman; 1989.

Hussain S, Matin AW, Islam O. Genetic algorithm for hierarchical wireless sensor
networks. Journal of Networks 2007;2:87–97.

Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE
international conference on neural networks, 1995. p. 1942–8.

Khanna R, Liu H, Chen H-H. Self-organization of sensor networks using genetic
algorithms ICC 006 IEEE international conference on communications. Istanbul,
Turkey, 2006. p. 3377–82.

Maslov IV, Gertner I. Multi-sensor fusion: an evolutionary algorithm approach.
Information Fusion. 2006;7:304–30.

Neal M, Trapnell BCJ. Go Dutch: exploit interactions and environments with artificial
immune systems. In: Flower DR, Timmis J, editors. Silico immunology. USA:
Springer; 2007.

Nestinger S, Chen B, Cheng HH. A mobile agent-based framework for flexible auto-
mation systems. IEEE/ASME Transactions on Mechatronics 2010;15:942–51.

Peng R, Pedram M. An analytical model for predicting the remaining battery capacity
of lithium-ion batteries. IEEE Transactions on Very Large Scale Integration
2006;14:441–51.

Poli R. Analysis of the publications on the applications of particle swarm optimisa-
tion. Journal of Artificial Evolution & Applications 2008:10685175 2008:10.

Qinru Q, Qing W, Burns D, Holzhauer D. Lifetime aware resource management for
sensor network using distributed genetic algorithm ISLPED006: Proceedings of
the 2006 international symposium on low power electronics and design.
Tegernsee, Germany: IEEE; 2006. p. 191–6.

Russell SJ, Norvig P. Artificial intelligence: a modern approach. 2nd ed Upper Saddle
River, New Jersey: Prentice Hall; 2003. p. 111–4.

Theodoridis S, Koutroumbas K. Pattern recognition. Academic Press; 2008.


	Optimal control of mobile monitoring agents in immune-inspired wireless monitoring networks
	Introduction
	An AIS-based structural health monitoring network
	AIS-based structural health monitoring
	High computational power sensor node
	Mobile agent-based sensor network middleware

	Pattern recognition-based damage detection and classification
	Feature extraction
	Damage detection using memory cells

	Optimization of agent generation and distribution
	Optimization of agent generation in artificial clonal selection process
	Non-dominated solutions for two defined objective functions
	Optimization of agent distribution
	Battery energy model
	Genetic algorithm for searching agent destination
	Effects of fitness punishment strategy on the network lifetime
	The impact of crossover probability and mutation probability on the good solution ratio and number of iterations


	Conclusions
	Acknowledgements
	References




