
An Object-Based Software Package for

Interactive Control System Design

and Analysis

Yong Zhu
Post Doctor

Bo Chen
Graduate Research Assistant

Harry H. Cheng
Professor, Member ASME1

e-mail: hhcheng@ucdavis.edu

Integration Engineering Laboratory, Department of

Mechanical and Aeronautical Engineering, University of

California, Davis, CA 95616

Ch is an embeddable C/C11 interpreter. It was developed to
allow software developers to use one language, anywhere and
everywhere, for any programming task. Ch supports C99, a latest
C standard ratified in 1999, and contains salient features for two
and three dimensional plotting and numerical computing for ap-
plications in engineering and science. Developed in Ch, Ch Con-
trol System Toolkit provides a control class with member functions
for object-based interactive modeling, analysis, and design of lin-
ear time-invariant control systems. The software package, avail-
able for downloading on the web, has been widely used in indus-
try to solve practical engineering problems and in universities for
instructional improvement. The design and implementation of Ch
Control System Toolkit are described in this paper. Two applica-
tion examples of control system design and analysis using Ch
Control System Toolkit demonstrate its power and simplicity.
@DOI: 10.1115/1.1630815#

1 Introduction

The modern control engineering design and analysis problems
have grown increasingly complex with both technological break-
throughs and theoretical advances over the last few decades. The
classical methods which heavily rely on pencil and paper are not
capable of solving the problems efficiently. A considerable num-
ber of software packages have been developed to bridge the gap
between modern control theory and the software/hardware imple-
mentation of the algorithms related to the chosen methodology.
The existing well-known interpretive software packages, such as
MATLAB Control System Toolbox @1#, MATRIXx @2#, and Math-
ematica’s Control System Professional @3# are commercially avail-
able for the purpose of computer-aided control system design
~CACSD!. In the program developing process using these soft-
ware packages, a user typically realizes the algorithms in a pro-
gram written in these special languages. For example, m-files are
used in MATLAB. In order to speed up loops that cannot be
vectorized and take advantage of previously written code in C and
C11 , these software packages provide mechanisms to interface
with external C/C11 programs. But such interfaces are quite
cumbersome. For example, to invoke C functions from MATLAB,
a user has to add MATLAB interface code to the original C code
and compile them to create MEX file @4#.

In addition to commercial software packages, many other
CACSD packages, such as SLICOT Control and System Library
@5#, Scilab @6#, Octave Control System Toolbox @7#, and Rlab @8#
are available under different open source licenses. The SLICOT
Control and System Library is written in FORTRAN. Applications
using SLICOT library have to be compiled before execution. It
cannot be used to perform interactive design and analysis. When
the parameters of the system change, the result of this change
cannot be observed immediately. The user needs to modify the
source code, recompile it, and run the executable code again. The
Octave Control System Toolbox ~OCST! uses a C struct like data
structure to represent systems and allows users to pass a single
variable for each dynamic system passed to OCST functions, re-
gardless of the selected internal representation. Octave provides
some C-style input and output functions, but it cannot integrate C
functions directly.
Recently, Cheng @9,10# has developed Ch which is an em-

beddable C/C11 interpreter. Ch is a superset of C. It supports all
features of the C language standard ratified in 1990. Many new
features such as complex numbers, variable length arrays, IEEE
floating-point arithmetic and type-generic mathematical functions
first implemented in Ch had been adopted in C99, the latest C
standard ratified in 1999. As a result, Ch contains more new fea-
tures in C99 than most existing C compilers. In addition, Ch sup-
ports classes in C11 for object-based programming. Further-
more, Ch has built-in support of two and three-dimensional
graphical plotting features and computational arrays for matrix
computation and linear system analysis with advanced numerical
analysis functions based on LAPACK. As a superset of C inter-
preter, all C programs without any modification can run in Ch
interactively without tedious edit/compile/link/debug cycles,
which greatly simplifies the programming tasks for many
engineering applications.
Taking the advantage of efficient numerical implementation, ac-

curacy, and reliability of Ch, we have developed Ch Control Sys-
tem Toolkit @11# for interactive design and analysis of control
systems. Ch Control System Toolkit is object-based. It provides a
CACSD environment to perform basic control system modeling,
analysis, and design in both time and frequency domain with a
user friendly graphical representation. Most functions in the Ch
Control System Toolkit utilized advanced numerical methods and
control algorithms @12,13#. Unlike other interactive CACSD pack-
ages, existing C/C11 source code can be integrated with
Ch Control System Toolkit application programs without any
modification.
Different from other interactive CACSD packages, Ch Control

System Toolkit is the first interactive CACSD environment not
only developed in the framework of C/C11 , but also can seam-
lessly interface with the existing C/C11 code. A web-based con-
trol system design and analysis system @14# has been developed
using the control class described in this paper. The system is
readily available to use through the web without any software
installation, system configuration and programming. In this paper,
design and implementation of Ch Control System Toolkit are de-
scribed along with its powerful features. The power and simplicity
of the software system are illustrated by several practical ex-
amples of control system design and analysis in both time domain
and frequency domains.

2 Design and Implementation of the Ch Control Sys-

tem Toolkit

2.1 Object-Based Design. A high quality computer-aided
control system analysis and design package should be easily ex-
tendible to incorporate new control theories and techniques. This
can be achieved by object-oriented software design @15#. The fun-
damentals of object-oriented methods for computer-aided control
system design have been described and illustrated in @16#. Ch
Control System Toolkit is an object-based software package. It is
easy to maintain and extend. A linear time invariant ~LTI! system

1Address all correspondence to this author.

Contributed by the Embedded/Ubiquitous Committee for publication in the JOUR-

NAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript

received January 2003; revised manuscript received October 2003. Associate Editor:

P. Wright.

366 Õ Vol. 3, DECEMBER 2003 Copyright © 2003 by ASME Transactions of the ASME

is modeled as an object of a class named CControl. CControl class
contains both private data and member functions that operate on
the data. The private data members of the class represent the at-
tributes of the system. The functions to perform control system
analysis and design are defined as public member functions of the
class. The data members of the class are designed to contain all
the attributes of three common LTI models in transfer function
~TF!, zero-pole-gain ~ZPK!, and state-space ~SS!. The use of a
single class to represent all LTI system models greatly simplifies
the programming and maintenance of Ch Control System Toolkit
functions, because it is no longer necessary to identify which rep-
resentation type is being passed in the internal representation.
Member functions are encapsulated in the class, which can avoid
the conflict of name spaces. The extension of Ch Control System
Toolkit can be easily achieved by adding more public functions in
the class.

2.2 Data Structure. The data structure is one of the most
important factors to the success of a complex CACSD software
package. As mentioned above, an LTI system is modeled as a
class named CControl in Ch Control System Toolkit. The data
structure of the CControl class defined in the header file control.h,
with some members omitted for clarity of presentation, is shown
as follows.

class CControl $
private:

/! private data members !/

double !m–Num; // coefficients of numerator

double !m–Den; // coefficients of denominator

double !m_A; // matrix A
int m–isdisc; // discrete system flag
double m–ts; // sample time of discrete-time systems
. . .

/! private member functions !/
// Adjust default response time
int m–adjustRespTime~array double a@:#, int num1, int num2,
double tol!;

. . .
public:
CControl~!; // constructor
;CControl(); // destructor

int step~class CPlot !plot, array double &yout, array double

&tout, array double &xout, . . . /! double tf !/);
// step response

. . .
%

The private data members of CControl class contain all infor-
mation of three common LTI models in TF, ZPK, and SS. The
coefficients of polynomials of the numerator and denominator of
transfer functions; the zeros, poles, and gain of the system; and
the values of system matrices in state-space are stored in arrays in
the system. The addresses of these arrays are recorded by the
private data members of the CControl class. For example, private
data m–Num is a pointer to an array, which stores the coefficients

of a polynomial for the numerator of a transfer function. When a
system is created using one of three models, the Ch Control Sys-
tem Toolkit automatically calculates other two types of models of
the system internally and keeps all information. The other at-
tributes of the systems such as gain and phase margins, crossover
frequencies, discrete or continuous system flag, sampling time of
discrete system, input and output delays, etc. are all defined as
private data members in CControl class. All functions for control
system analysis and design are defined as public member func-
tions in CControl class. They serve as an interface between user’s
applications and control class. Only those member functions can
be used in an application program. For example, to plot a step
response of a system, the public member function step~! can be
called in the application program. The private member functions

defined in CControl class are used to support the operations of
other member functions. As an example, the private member func-
tion m–adjustRespTime~! is aimed to find optimal response time.
Public member functions, such as step~!, impulse~!, and initial~!,
call this private member function to adjust the default response
time according to a specified deviation tolerance.

2.3 Member Functions

2.3.1 Constructor and Destructor. The LTI systems can be
specified by linear time invariant equations in TF, ZPK, and SS
models. The CControl class contains all information of above
three types of models. The constructor of class CControl creates
an empty object of this class. The constructor is a special member
function of a class, which is invoked automatically each time an
object of that class is instantiated. CControl class constructor ini-
tializes private data members of the class. The destructor is called
when an object is destroyed. In Ch Control System Toolkit, the
memory allocated for the class is released in the destructor.

2.3.2 Public Member Functions. The program below creates

an LTI system model from its transfer function G(s)5 3/(s2

12s12) , and plot the step response of the system.

#include ^control.h&

int main~! $
double num@1#5$3%;
double den@3#5$1, 2, 2%;
class CPlot plot;
class CControl sys;

sys.model~‘‘tf,’’ num, den!;
sys.step~&plot, NULL, NULL, NULL!;
return 0;

%

In this program, the first two lines inside function main~! declare
two arrays with double data type to store the coefficients of the

numerator polynomial and denominator polynomial s212s12.
The third line instantiates an object of CPlot class. CPlot is a Ch
class for generating 2D/3D plots. The details of using this plotting
class for customized plotting will be addressed in the subsequent
section. The next line instantiated an object of CControl class with
paramenters of transfer function. Once the system model is con-
structed, public member functions can be called to perform analy-
sis and design of the control system. In this program, we use
public member function CControl::step~! to plot the step response
of the system. The output of step response could be a separate plot
or a data set stored in the computational arrays specified by the
arguments of the member function CControl::step~!.

2.3.3 Private Member Functions. The private member func-
tions serve as utility functions for the other member functions of
the class. The private member functions cannot be called in user
application programs. For example, the private member function
CControl::m–adjustRespTime~! defined in Ch Control System
Toolkit is for adjusting the default response time to an optimal
value. It is obvious that the specified default response time is not
an optimal value for different systems. Ch Control System Toolkit
uses this utility function to find the optimal response time period
for different systems. The function removes the response values
with a small deviation over time in order to increase time interval
with a significant transient response for plotting. All the time re-
sponse public member functions call this private member function
to adjust the default response time.

2.3.4 Polymorphism. Ch supports polymorphism—the abil-
ity that the same function responses differently in different calls
when the number of arguments and the argument data types are
different. This feature provides flexibility and simplicity in the
software implementation. Many member functions in CControl
class are polymorphic member functions. For example, the mem-

Journal of Computing and Information Science in Engineering DECEMBER 2003, Vol. 3 Õ 367

ber function CControl::model~! which will be described later is a
polymorphic member function. The number of arguments and ar-
gument data type are different when it is used to create different
type of models.

2.4 User Friendly Graphical Presentations. One of the sa-
lient features of Ch Control System Toolkit is its user-friendly
graphical presentations. The toolkit can represent analysis and de-
sign results graphically using the plotting class. CPlot is a class
for high-level creation and manipulation of two and three dimen-
sional plotting. It allows output visually displayed or exported as
external files with a variety of different file formats including
postscript file, PNG, LaTeX, etc. In Ch Control System Toolkit,
all member functions with plotting features internally invoke
member functions of class CPlot to generate 2D/3D plots. To al-
low the users to customize a plot, an object of class CPlot needs to
be instantiated. Once a plot object is instantiated, properties such
as title and axis labels can be set by calling member functions of
class CPlot. The address ~a pointer! of this object needs to be
passed as an argument to the member functions with plotting fea-
tures of Ch Control System Toolkit.
If the user wants to create an image file for output rather than

displaying it on the screen, the member function CPlot::output-
Type~! can be used to specify the output format and filename.

3 Functionalities of Ch Control System Toolkit

3.1 System Model Construction. For analysis and design
of a control system using Ch Control System Toolkit, the model of
the system needs to be constructed first. As mentioned before, one
important feature of Ch Control System Toolkit is using a single
class to represent all LTI system models. The different type of
system models can be created by a polymorphic member function
CControl::model~!. The first argument indicates the type of the
model. The remaining arguments contain the information related
to the model. For example, the statement

sys.model~‘‘tf,’’ num, den!;

constructs a continuous-time TF model for the system. The first
argument ‘‘tf’’ of a string type indicates that the model to be
created is a transfer function model. The remaining two arguments
num and den are two one-dimensional computational arrays con-
taining the coefficients of the polynomials which represent the
numerator and denominator of the transfer function, respectively.
Based on these information, the TF model can be created readily.
Furthermore, the member function CControl::model~! calculates
the values of system matrices in state-space, zeros, poles, and gain
of the system and initializes proper private data members of the
class.
A zero-pole-gain model can be instantiated as below.

sys.model~‘‘zpk,’’ z, p, k!;

where the first argument ‘‘zpk’’ indicates that the model to be
created is a zero-pole-gain model. The other arguments z , p and k
contain the zeros, poles and gain of the system, respectively.
In Ch Control System Toolkit, both single-input/single-output

~SISO! systems and multiple-input/multiple-output ~MIMO! sys-
tems can be modeled in the state-space model. Typically, the state-
space model of a system consists of two first-order differential
vector equations in the form of

ẋ5Ax1Bu (1)

y5Cx1Du (2)

where vectors x, u, and y are the state, input, and output vectors of
the system, respectively. A state-space model can be created as
follows,

sys.model~‘‘ss,’’ A, B, C, D!;

where the first argument ‘‘ss’’ indicates that a state-space model
will be created. The subsequent four arguments are system matrix,
input matrix, output matrix and direct transmission matrix.
A discrete-time system model in TF, ZPK, and SS type can be

created by passing an extra argument representing a sample time
to the member function CControl::model~! as illustrated below

sys.model~‘‘tf,’’ num, den, 0.5!;

In this case, the member function CControl::model~! instantiated a
discrete-time system model with a sample time of 0.5 second.

3.2 Retriving System Information. Ch Control System
Toolkit supports multiple model representations such as SS mod-
els, TF models, and ZPK models. The internal data structure is
capable of simultaneously representing a given system in all these
three forms. When a system model is created using one of three
models, the Ch Control System Toolkit automatically calculates
other two types of models of the system internally and keeps all
information. The model information and system characteristics
can be retrived by member functions. For example, the member
function CControl::size~! can obtain dimensions of output/input/
system matrix for SS models, orders of numerator and denomina-
tor for transfer function models, or numbers of zeros and poles for
ZPK models, according to different values of the argument passed
in.

3.3 System Conversions and Model Interconnections. Ch
Control System Toolkit provides the capability of converting from
continuous to discrete, discrete to continuous, and discrete to dis-
crete systems. It also provides the state-space transformations. A
fairly complete set of interconnecting member functions is also
available to perform model interconnection in series, parallel,
and feedback. It also contains member functions for system reduc-
tion such as minimal realization of the system and pole-zero
cancellation.

3.4 Design and Analysis in Time and Frequency Domains.
Ch Control System Toolkit provides a group of member functions
to compute the time responses of step input, impulse input, even
arbitrary inputs, and initial conditions for both SISO and MIMO
systems. The output responses of these functions can be displayed
by either a plot or a data set passed through arguments. In the
frequency domain, Ch Control System Toolkit can also generate
commonly used frequency response in Bode, Nyquist and Nichols
plots; calculate the bandwidth, DC gain, gain and phase margins
of an SISO system for system dynamics and stability analysis.

3.5 Root-Locus Design. The locations of the roots of the
characteristic equation, which are the closed-loop poles, in the
s-plane will affect the transient-response features of the system. It
also determines the system stability. The root locus is a technique
which shows how changes in one of a system’s parameters will
change the pole positions and thus change the system’s dynamic
response. Although the parameter could be any parameter which
enters the equation linearly, the root locus is most commonly used
to study the effect of loop gain variations. Ch Control System
Toolkit offers a member function rlocus~! to calculate and plot the
root locus of an SISO system when the loop gain k varies from 0
to `.

3.6 Design and Analysis in State-Space. State-space
method is a modern control system design and analysis method.
The controllability and observability are important structural
properties of a control system. If there exists an input array U(t)
that will take the states of the system from any initial state X0 to
any desired final state X f in a finite time interval, the system is
controllable. Normally, the controllability matrix can be easily
used to determine the controllability of the system. In Ch Control
System Toolkit, the member function CControl::ctrb~! can con-
struct the controllability matrix of the system. The member func-
tion CControl::obsv~! can be used to calculate the observability

368 Õ Vol. 3, DECEMBER 2003 Transactions of the ASME

matrix of the system. The controllability and observability grami-
ans can be calculated by the member functions CControl::gram~!.
The positions of the closed-loop poles will affect the system’s

dynamic response. For a system presented by the SS model with
the linear state feedback regulator control law defined as u
52kx, the closed loop poles are eigenvalues of matrix

A15A2BK (3)

To make the system more stable and have the desired time re-
sponse characteristics, the user can first select desired pole loca-
tions, and then find the gain vector k which moves these poles to
the desired locations. This technique is known as pole placement.
The member function CControl::acker~! and CControl::place~! can
be used for pole placement. It is recommended that using
member function CControl::acker~! for SISO systems and
CControl::place~! for MIMO systems.

3.7 Optimal Control System Design and Equation Solvers
Ch Control System Toolkit provides two functions, CCon-
trol::lqr~! and CControl::dlqr~!, for designing linear-quadratic
~LQ! state-feedback regulator for continuous-time and discrete-
time plants, respectively. The member function CControl::lyap~!
can be used to solve continuous-time Lyapunov equations in both
general and special forms.

4 Salient Features of Ch Control System Toolkit

CÕC¿¿ Compatible Ch Control System Toolkit is the first in-
teractive CACSD environment developed in the framework of
C/C11 . We believe that it is the simplest possible solution for
control system design and analysis in the sprit of C/C11 . It can
seamlessly interface existing C/C11 code in either source code
or binary static/dynamical libraries without re-compilation. This
allows users to take advantage of a large body of existing
C/C11 programs and speeds up the design and implementation
process of control systems. For example, graphical user interface
in X11/Motif, Windows, GTK1 and 3D graphics in OpenGL,
computer vision in OpenCV, data acquisition in NI-DAQ and mo-
tion control in NI-Motion are readily available for application
development. Ch Control System Toolkit enables users to do mod-
eling, analysis, design, and real-time implementation of control
systems all in one language.

Object-Oriented Ch Control System Toolkit is an object-
oriented control toolkit. Class CControl encapsulates the informa-
tion of three common LTI models and the interface of Ch Control
System Toolkit. Using a single class to represent different types of
LTI models greatly simplifies the application programs and the
maintenance of control toolkit. The functionarities of Ch Control
System Toolkit can be easily extended by defining more public
functions of CControl class.

Embeddable Taking the advantage of embeddable feature of
Ch, Ch Control System Toolkit can be embedded in a C/C11

application program within the same process to perform robust
control system design and analysis.

Portable Ch Control System Toolkit is platform independent. A
program, developed using Ch Control System Toolkit in one
platform, can be executed in other platforms without any
modification.

5 Application Examples

Ch Control System Toolkit provides a set of member functions
for control system analysis and design. Two examples in this sec-
tion illustrate how to use Ch Control System Toolkit to design and
analyze control systems both in time and frequency domains.

Example 1. Consider the system expressed in state–space Eqs.
~1! and ~2! with the values of the matrices given below.

A5F
0 1 0 0

1 0 0 0

0 0 0 1

20.5 0 0 0

G , B5F
0

1

0

21

G , C5@0 0 1 0# , D50

1. Find the feedback gain K that places the closed-loop poles at
s521,21,211 j ,212 j .

2. Find the response of the closed-loop system to an initial
condition of x150.175.

The program below can be used to solve this problem. At the
beginning of the program, we declare four computational arrays
A , B , C , and D with double data type to store the values of
open-loop system matrices. The array k is used to store the feed-
back gains of the control law. Array p is the desired poles of the
closed-loop system. Array A1 is the system matrix A1 of the
closed-loop system in Eq. ~3!. Array x0 is the initial values of the
state variables. After array declarations, the object of CPlot class
is instantiated for initial response. The line

sys0.model~‘‘ss,’’ A, B, C, D!;

creates a system model based on the open-loop system matrices.
After calling the acker~! member function, a feedback gain vector
is found and it can be used to calculate the closed-loop system
matrix A1. Then, the closed-loop system model is created by ma-
trices A1, B , C , and D . Once the closed-loop system is instanti-
ated, the initial response of the closed-loop system can be plotted
by the member functions initial~! shown in Fig. 1. Since only the
plot is needed, the arguments yout , tout , and xout in the mem-
ber function initial~! for the output of initial response, time vector,
and state trajectories, respectively, are set to NULL .

#include ^control.h&

#define NUMX 4 // order of space-state
#define NUMU 1 // number of input
#define NUMY 1 // number of output

int main~! $

array double A@NUMX#@NUMX#5 $ 0, 1, 0, 0,

1, 0, 0, 0,

0, 0, 0, 1,

20.5, 0, 0, 0%;

array double B@NUMX#@NUMU#5$0, 1, 0, 21%;
array double C@NUMY#@NUMX#5$0, 0, 1, 0%;
array double D@1#@1#5$0%;
array double K@1#@NUMX#;

Fig. 1 Initial response of the system.

Journal of Computing and Information Science in Engineering DECEMBER 2003, Vol. 3 Õ 369

array double complex p[NUMX]
5$21, -1, complex(21,1), complex(21,21)%;

array double A1@NUMX#@NUMX#;
array double x0@NUMX#5$0.175, 0, 0, 0%;
class CPlot plotinitial;
class CControl sys0;
class CControl sys;
sys0.model~‘‘ss,’’ A, B, C, D!;
sys0.acker~K, p!;
printf(‘‘K5%f\n’’, K);

A15A2B!K;
sys.model~‘‘ss’’, A1, B, C, D!;
sys.initial~&plotinitial, NULL, NULL, NULL, x0!;
return 0;

%

The feedback gain K as output of the above program is
K512.000000 16.000000 4.000000 12.000000

Example 2. For the system with following open-loop transfer

function (s12)2/s2(s120)(s216s125)

1. Sketch the Bode plot magnitude and phase.
2. Sketch the root locus of the system.

The system is given by a transfer function. The numerator of
transfer function is the multiplication of two first order polynomi-
als. We declare two arrays to contain the coefficients of these
polynomials. The coefficients of the numerator are stored in array
num . Similarly, the denominator of transfer function consists of

two polynomials of s3120s2 and s216s125. The two arrays of
den1 and den2 are declared to store the coefficients of these two
polynomials. The array den is used to store the coefficients of the
denominator polynomial of the transfer function. The two objects
plotbode and plotrlocus of CPlot class are used for Bode and root
locus plots. Function call

conv~c, x, y!;

calculates the convolution c of two arrays x and y . If x and y are
two vectors of polynomial coefficients, the convolution of x and y
is equivalent to the multiplication of these two polynomials. The
next line

sys.model~‘‘tf’’, num, den!;

constructs a transfer function model of the system. The member
function CControl::grid~! adds or removes grid lines for regular
plots or Nyquist plot. It has only one argument as shown below.

int grid~int flag!;

If flag is set to 1, the grid lines are turned on. Otherwise, the grid
lines are turned off. The member function CControl::sgrid~! is

similar to CControl::grid~!. It adds and removes grid lines in
s-plane. The syntax of member function CControl::bode~! for a
Bode plot is shown below.

sys.bode~plot, mag, phase, wout, wmin, wmax!;

The first argument plot is an object of Ch CPlot class. Arrays
mag and phase contain the returned magnitude ~in decibels! and
phase ~in degrees! of the frequency response corresponding to the
frequencies in wout ~in rad/sec!. The last two arguments, wmin
and wmax , explicitly specify the frequency range to be used for
the plot. In this example, the arguments wmin and wmax are
absent. As a result, the default frequency range is used for the
Bode plot. Since only Bode plot is required, the arguments mag ,
phase, and wout are set to NULL . The syntax of member func-
tion CControl::rlocus~! is as follows.

sys.rlocus~plot, r, kout!;

The first argument is the same as the member function CControl-
::bode~!. The argument kout is array of reference containing se-
lected gains by users or by default. The argument r is array of
reference containing the complex roots corresponding to gains in
argument kout . The program for this example is shown below
with output in Figs. 2 and 3.

#include ^control.h&

#define M1 2
#define M2 2
#define N1 4
#define N2 3

int main~! $
double num1@M1#5$1, 2%;
double num2@M2#5$1, 2%;
double den1@N1#5$1, 20, 0, 0%;//sˆ 2(s120)5sˆ 3120sˆ 2
double den2@N2#5$1, 6, 25%;
double num@M11M221#;
double den@N11N221#;
class CPlot plotbode, plotrlocus;
class CControl sys;

conv~num, num1, num2!;
conv~den, den1, den2!;
sys.model~‘‘tf’’, num, den!;
sys.grid~1!;
sys.sgrid~1!;
sys.bode~&plotbode, NULL, NULL, NULL!;
sys.rlocus~&plotrlocus, NULL, NULL!;
return 0;

%

Fig. 2 Bode plot of the system. Fig. 3 Root locus of the system.

370 Õ Vol. 3, DECEMBER 2003 Transactions of the ASME

6 Conclusions

An object-based interactive control system toolkit has been de-
veloped in Ch—a C/C11 interpreter. The Ch Control System
Toolkit supports most classical and modern control techniques and
provides a fairly complete set of member functions for control
system design and analysis. It is able to represent three commonly
used LTI models of TF, ZPK, and SS in a single object of CCon-
trol class. The member functions of Ch Control System Toolkit
allow users to interconnect models, perform system transforma-
tions and conversions, time/frequency domain analysis and de-
sign, root-locus design, state-space analysis and design, and opti-
mal control system design. The object-based design method
makes Ch Control System Toolkit easy to extend and maintain. A
Ch program using Ch Control System Toolkit can integrate seam-
lessly with existing C/C11 programs or embedded in other
C/C11 application programs to speed up the design and analysis
of control systems. The software is available for downloading on
the web @14#.

References

@1# The MathWorks, Inc., 1998, Control System Toolbox User’s Guide, The Math-

Works, Inc., Natick, MA.

@2# Integrated Systems, Inc., 1990, MATRIXx Control Design, Integrated Systems,
Inc., Santa Clara, CA.

@3# Wolfram Research, Inc., 2003, ‘‘Mathematica’s Control System Professional,’’

http://www.wolfram.com/products/applications/control.

@4# Hanselman, D., and Littlefield, B., 2001, Mastering Matlab 6—A Comprehen-

sive Tutorial and Reference, Prentice Hall, Upper Sadle River, New Jersey.

@5# van den Boom, A., and Van Huffel, S., 1996, ‘‘Developments Around the

Freeware Standard Control Library Slicot,’’ Proc. the 1996 IEEE International

Symposium on Computer-Aided Control System Design, IEEE, New York, NY,

pp. 473–476.

@6# Delebecque, F., 2000, ‘‘A Slicot Based Control Library for Scilab,’’ Proc. the

2000 IEEE International Symposium on Computer-Aided Control System De-

sign, IEEE, Piscataway, NJ, pp. 147–149.

@7# Hodel, A. S., Tenison, R. B., Clem, D. A., and Ingram, J. E., 1996, ‘‘The

Octave Control Systems Toolbox: A MATLAB-like CACSD Environment,’’

Proc. the 1996 IEEE International Symposium on Computer-Aided Control

System Design, IEEE, New York, NY, pp. 386–391.

@8# Rlab, 2001, http://rlab.sourceforge.net.
@9# Cheng, H. H., 1993, ‘‘Scientific Computing in the Ch Programming Lan-

guage,’’ Scientific Programming, 2~3!, pp. 49–75.
@10# Cheng, H. H., 2003, ‘‘Ch Language Environment User’s Guide,’’ SoftIntegra-

tion, Inc., http://www.softintegration.com.

@11# SoftIntegration, Inc., 2003, ‘‘Ch Control System Toolkit User’s Guide,’’ http://

www.softintegration.com/products/toolkit/control.

@12# Patel, R. V., Laub, A. J., and van Dooren, P. M., 1994, Numerical Linear

Algebra Techniques for Systems and Control, IEEE Press, New York.

@13# Chen, C. T., 1999, Linear System Theory and Design, Oxford University Press,

New York.

@14# SoftIntegration, Inc., 2003, ‘‘Web-Based Control Design and Analysis Sys-

tem,’’ http://www.softintegration.com/webservices/control.

@15# Bell, W. E., Lamont, G. B., and Trevino, F. L., 1994, ‘‘Using Object-

Orientation in Developing an Extendible CACSD Package,’’ Proc. the 1994

IEEE/IFAC Joint Symposium on Computer-Aided Control System Design,

IEEE, New York, NY, pp. 255–260.

@16# Barker, H. A., 1994, ‘‘Open Environment and Object-Oriented Methods: The

Way Forward in Computer-Aided Control System Design,’’ Proc. the 1994
IEEE/IFAC Joint Symposium on Computer-Aided Control System Design,
IEEE, New York, NY, pp. 3–12.

Journal of Computing and Information Science in Engineering DECEMBER 2003, Vol. 3 Õ 371

