
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond

fax: +1530 752

E-mail addr
Computers & Graphics 29 (2005) 331–339
Technical section

Interpretive OpenGL for computer graphics

Bo Chen, Harry H. Cheng�

Integration Engineering Laboratory, Department of Mechanical and Aeronautical Engineering, University of California,

Davis, CA 95616, USA

www.elsevier.com/locate/cag
Abstract

OpenGL is the industry-leading, cross-platform graphics application programming interface (API), and the only

major API with support for virtually all operating systems. Many languages, such as Fortran, Java, Tcl/Tk, and

Python, have OpenGL bindings to take advantage of OpenGL visualization power. In this article, we present Ch

OpenGL Toolkit, a truly platform-independent Ch binding to OpenGL for computer graphics. Ch is an embeddable C/

C++ interpreter for cross-platform scripting, shell programming, numerical computing, and embedded scripting. Ch

extends C with salient numerical and plotting features. Like some mathematical software packages, such as MATLAB,

Ch has built-in support for two and three-dimensional graphical plotting, computational arrays for vector and matrix

computation, and linear system analysis with advanced numerical analysis functions based on LAPACK. Ch OpenGL

Toolkit allows OpenGL application developers to write applications in a cross-platform environment, and all of the

OpenGL application source code can readily run on different platforms without compilation and linking processes. In

addition, the syntax of Ch OpenGL Toolkit is identical to C interface to OpenGL. Ch OpenGL Toolkit saves OpenGL

programmers’ energies for solving problems without struggling with mastering new language syntax. Ch OpenGL

Toolkit is embeddable. Embedded Ch OpenGL graphics engine enables graphical application developers or users to

dynamically generate and manipulate graphics at run-time. The truly platform independent, scriptable, and embeddable

features of Ch OpenGL Toolkit make it a good candidate for rapid prototyping, mobile graphics applications, Web-

based applications, and classroom interactive presentation. The design issues of Ch OpenGL Toolkit and its potential

applications are presented in the article. A methodology that can be used to implement a Web-based visualization

system based on Ch OpenGL and Ch CGI is also introduced. The method described in the article can be easily followed

to create a Web-based visualization system at low cost and with minimal effort. The software packages Ch and Ch CGI

Toolkit are freely available and can be downloaded from the Internet.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Methodology and techniques—interaction techniques; Graphics utilities—software support; Graphics systems—

distributed/network graphics
1. Introduction

The field of computer graphics continues rapidly

growing with an ever-increasing number of applications
e front matter r 2005 Elsevier Ltd. All rights reserve

g.2005.03.002

ing author. Tel.: +1530 752 5020;

4158.

ess: hhcheng@ucdavis.edu (H.H. Cheng).
in diverse areas, such as entertainment, business, art,

education, medicine, engineering, and industry. A

number of software packages have emerged to help

generate and manipulate two-dimensional (2D)/three-

dimensional (3D) graphics. OpenGL [1] is a graphical

application programming interface (API) for the C/

C++ programming language. The primary motivation

for developing OpenGL API is to create an operating
d.

www.elsevier.com/locate/cag


ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339332
system, window system, and hardware platform inde-

pendent API for the development of 2D/3D graphics.

Since OpenGL API was introduced in 1992, many

applications, such as CAD, CAM, and game develop-

ment, have benefited from its cross-platform accessi-

bility. OpenGL has become a premier environment for

developing portable 2D/3D graphics applications. It is

also widely used for teaching and learning computer

graphics. The features of device independence and

portability make OpenGL a strategic interface for

courses on computer graphics. Computer platforms

vary from instructor to student and from school to

student home. By using OpenGL, programs developed

on a machine can be debugged and graded on other

machines with different platforms, and the resulting

graphics are the same.

Since OpenGL is one of the most popular industry

standard graphical software packages, many languages,

such as Fortran, Java, Tcl/Tk, and Python, have

OpenGL bindings to take advantage of OpenGL

visualization power. The information about these

language bindings to OpenGL is introduced in Section

2. We have developed Ch OpenGL Toolkit [2]. Ch is an

embeddable C/C++ interpreter. Ch OpenGL Toolkit

further enhances the portability of OpenGL API.

Usually, OpenGL application programs have to be

compiled and linked before running these programs on

different platforms. Ch OpenGL Toolkit makes

OpenGL applications truly portable across different

platforms. With Ch OpenGL, OpenGL application

source code can readily run on different platforms

without compilation and linking processes.

The design issues of Ch OpenGL Toolkit and its

potential applications are presented in the article. A

comparison of Ch OpenGL Toolkit to similar attempts

is also given and the novel features of Ch OpenGL are

highlighted. The remainder of the article is organized as

follows. Section 2 reviews major language bindings to

OpenGL. Section 3 introduces Ch and Ch OpenGL.

Several design issues related to Ch OpenGL Toolkit are

discussed. Section 4 presents some potential applications

of Ch OpenGL. Section 5 summarizes different

approaches of Web-based visualization systems and

demonstrates how to implement a Web-based visualiza-

tion system based on Ch OpenGL and Ch CGI. Section

6 discusses planned future work for portable and Web-

based animation. Section 7 summarizes the presented

work.
2. Related work

OpenGL is supported by major operating systems and

window systems, and it is callable from many program-

ming languages. This section introduces different

language bindings to OpenGL.
The Fortran 90 Interface to OpenGL, f90gl [3], is a

public domain implementation of the official Fortran 90

bindings to OpenGL. The interface is responsible for

ensuring the interoperability between Fortran and C,

such as matching Fortran data types to C data types,

choosing subroutines and functions in Fortran for

different C functions, and dealing with array arguments.

Most vendor implementations of the Fortran interface

to OpenGL are for a specific system with specific

Fortran and C compliers. Although the Fortran 90

Interface is much more robust and portable than the

Fortran 77 interface because the Fortran/C interface is

contained entirely inside the Fortran 90 interface to

OpenGL and hidden from the user, some potential

problems still exist. For example, the user is responsible

for choosing appropriate compilers that provide a

sufficient inter-language calling convention, ensuring

the persistence of function arguments that are assigned

to C pointers internally, dealing with unsigned int data

type in C functions, and paying special attention to the

array order difference in Fortran and C [4].

The JOGL Project is a reference implementation of

the Java bindings for OpenGL API, and is designed to

provide hardware-supported 3D graphics to applica-

tions written in Java [5]. Jogl provides access to the latest

OpenGL routines (OpenGL 1.4 with vendor extensions)

as well as platform-independent access to hardware-

accelerated off-screen rendering (‘‘pbuffers’’). JOGL

was designed for the most recent version of the Java

platform, J2SE 1.4 and later. It only supports true color

(15 bits per pixel and higher) rendering, and it does not

support color-indexed modes. Since JODE is an ongoing

project, the coverage of accessing OpenGL functionality

is limited, and there are some issues remain on different

platforms, which can be found in JOGL user’s guide on

the Web page [5].

Scripting languages have been increasingly used for

rapid prototyping, dynamic manipulating components,

and Web-based applications. The reason for the

increasing popularity of scripting languages in these

application areas is that scripting languages provide

rapid turnaround during development by eliminating

compile times and allow users to dynamically program

the applications at run-time [6]. Most scripting lan-

guages embed different binary libraries inside the

language allowing users access to the library’s function-

ality in scripts. For example, many scripting languages

have bindings to OpenGL providing interpretive access

to the OpenGL libraries so that developers can perform

interactive 3D graphics in scripts. As examples, Tcl/Tk

and Python bindings to OpenGL are described below.

There are several Tcl/Tk bindings to OpenGL. The

most popular two implementations are TKOGL and

Togl. TKOGL [7], a Tk OpenGL widget, enables the

creation and display of 3D graphics using the OpenGL

API. The advantage of this implementation is that the



ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339 333
3D graphics widget behaves like a Tk 2D widget,

enabling both the experienced and novice users to

generate and display 3D models in a concise manner.

The drawback of the system is that it ties OpenGL

commands to the widget and destroys one of the main

advantages of OpenGL, window system independence.

Togl [8] is also a Tk widget for OpenGL rendering.

Although Togl provides the means to open a window for

displaying OpenGL graphics, it does not include Tcl

bindings for any of the OpenGL rendering functions. A

typical Togl program has Tcl code for managing the user

interface and a C program for computations and

OpenGL rendering. To use Togl effectively, one should

be familiar with Tcl, Tk, OpenGL, and C programming.

PyOpenGL [9] is the Python binding to OpenGL and

related APIs. It is an influential scriptable package for

3D graphics and has received some practical applica-

tions. However, like other script language bindings to

OpenGL, the syntax of functions in PyOpenGL has

been modified from standard OpenGL API. Further-

more, the calling method and functionality of some

functions appeared in PyOpenGL 2 are different from

that of the C counterparts because of the differences

between C and Python. For example, each PyOpenGL

function call, which has an argument of an array pointer

or array element, has different format from a C function

call due to the difference between C and Python in the

way that they access arrays.
3. Ch and Ch OpenGL

Ch, originally developed by Cheng [10,11], is an

embeddable C/C++ interpreter for cross-platform

scripting, shell programming, numerical computing,

and embedded scripting. It supports all features of the

C language standard ratified in 1990. Many new features
Fig. 1. Vector and matri
such as complex numbers, variable length arrays, IEEE

floating-point arithmetic and type-generic mathematical

functions first implemented in Ch were adopted in C99,

a new C standard ratified in 1999. In addition, Ch

supports classes in C++ for object-based program-

ming. Like other mathematical software packages, such

as MATLAB, Ch has built-in support for two and three-

dimensional graphical plotting, computational arrays

for vector and matrix computation, and linear system

analysis with advanced numerical analysis functions

based on LAPACK. With the power of computational

arrays, we can specify vector and matrix operations

directly in expressions in the same way as scalars in both

interactive execution and programs. Fig. 1 shows

interactive execution of programming statements in a

Ch shell. The type declarators array and int declare

variables A and B as computational arrays of int type.

The header file array.h needs to be included in a

program to use computational arrays.

Ch OpenGL is a Ch binding to OpenGL. It provides

access to the full functionality of OpenGL, GLU,

GLUT, and GLAUX. Ch OpenGL has many novel

features. First, Ch is a cross platform C/C++ inter-

preter. As a part of Ch distribution, Ch OpenGL allows

OpenGL application developers to write applications in

a cross-platform environment. All of the OpenGL

application source code can readily run on different

platforms without compilation and linking processes as

shown in Fig. 2. Second, the syntax of Ch OpenGL is

exactly the same as C interface to OpenGL. There is no

need of learning new syntax. Third, Ch OpenGL is

embeddable. Embedding Ch into graphics applications

allows developers or users to dynamically generate and

manipulate graphics at run-time. Finally, computational

array in Ch makes vector and matrix operations carried

out in 3D graphics more concise. We believe that the

computational efficiency of graphics applications can be
x operations in Ch.



ARTICLE IN PRESS

Fig. 2. Run C/C++ OpenGL source code on different

platforms.

Fig. 3. Ch SDK allows Ch scripts interfacing with C/C++

binary libraries.

Fig. 4. Running an OpenGL program interpretively and

interactively.

B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339334
significantly improved by taking advantage of Ch

numerical capabilities.

Ch interface to OpenGL is much simpler than any

other language interface to OpenGL because both Ch

and OpenGL share same syntax and data types. Ch

scripts can access functions in static or dynamical C/

C++ binary libraries through Ch SDK. Fig. 3 shows

how a Ch OpenGL script interfaces with the OpenGL C

library. When a Ch OpenGL script (C/C++ OpenGL

source code) runs, Ch looks for function files that

correspond to functions in the script in a Ch function

library. These function files pass function parameters in

the Ch space to the corresponding functions in the Ch

dynamically loaded library (CDLL) in the C space

through Ch SDK. Functions in the CDLL invoke

OpenGL C functions and return results back to Ch

function files. Ch OpenGL Toolkit consists of a Ch

function library and a Ch dynamically loaded library for

OpenGL. The implementation of Ch OpenGL Toolkit is

straightforward for simple OpenGL C functions. For

some functions, which have arguments of pointers to

callback functions, need to be specially handled because

these functions in the C space have callbacks in the Ch

space. The strategy to solve this problem in Ch OpenGL

Toolkit is to create a Ch callback counterpart in the C

space. As an example, the program for the system shown
in Fig. 4 [12] uses function glutDisplayFunc to set the

display callback for each window in GLUT. When

GLUT determines that the screen-space window needs

to be redisplayed, the display callback for the screen-

space window in the C space is called, and this C

callback in turn calls the Ch callback through a

dynamically loaded library as shown in Fig. 5.
4. Potential applications of Ch OpenGL

4.1. Run OpenGL programs interpretively

Ch OpenGL Toolkit supports core OpenGL, GLUT,

and GLAUX. A C/C++ program using OpenGL

functions can be readily treated as a Ch script. The

program can directly run in different command shells,

an integrated development environment (IDE), or

Windows explorer in Windows without compilation

and linking. Fig. 6 illustrates how a C program

transformation.c, one of the popular Nate Robins’

OpenGL tutorial demo programs [12], is executed

interpretively in a Ch shell. Fig. 4 displays the output

from the execution of the program transformation.c in a

Ch command shell. The source code of all Nate Robins’

OpenGL demos is available at [12,13]. They are readily

to run in Ch without compilation [13]. Interpretive

OpenGL is well suited for graphical rapid prototyping,

interactive classroom presentation, and student learning.

The effects of different parameters on the output can be

appreciated instantly by modifying their values and



ARTICLE IN PRESS

Fig. 5. Handle functions with callback arguments.

Fig. 6. Interpretive execution of the C program transformation.c in a Ch shell.

B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339 335
running source code immediately without recompilation

and linking.

4.2. Mobile graphics

In internet-based distributed cooperative graphics

systems, there is a need to send graphics to different

hosts in the system. Instead of sending graphics data, we

may send code to the target systems to generate and

manipulate graphics locally. This approach reduces the

network traffic dramatically in heavy graphics transmis-

sion systems. Graphical mobile programs can be

dynamically generated by application programs online

in one machine and run on other machines with different

platforms. In order to support the execution of the

mobile graphical code in a heterogeneous network, a

scriptable graphical engine, such as Ch [11], should be
embedded into each host to which mobile graphical code

may migrate. Ch OpenGL is a good candidate for this

kind of applications.

4.3. Web and network applications

Many existing visualization applications were

written in C/C++ using OpenGL. However, difficulty

in interfacing with Web servers impeded their ap-

plications in Web-based visualization systems. As a

superset of C, Ch is suitable for Web-based applications

because of its interpretive nature. Many Web-based

applications, such as a Web-based system for control

system design and analysis [14], have been developed in

Ch. With Ch OpenGL and Ch CGI [15], C/C++

OpenGL programs can be used in Web-based visualiza-

tion systems.



ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339336
5. Ch OpenGL Web applications

This section introduces different approaches of Web-

based visualization systems and presents how to imple-

ment a Web-based visualization system based on Ch, Ch

OpenGL, and Ch CGI.
5.1. Different approaches of Web-based visualization

systems

Web-based visualization systems are usually based on

client/server architectures as shown in Fig. 7. For server-

based approaches, visualization is executed on the server

side, and resulting graphics files are returned to a client

machine for viewing in a browser. An end-user sets

application parameters and activates a visualization

process through a form-based interface in a browser.

The form is processed by CGI, ASP, or JSP, or other

scripts, which invoke an application program on the

server machine and send the resulting graphics data or

file to the client machine.

Fig. 7 (a) shows a server-based visualization system,

which uses virtual reality modeling language (VRML)

[16]. VRML is an ISO standard file format for

describing interactive 3D scenes and worlds. In this

approach, VRML scenes are generated on the server

side by a VRML engine and rendered on the client side

by a VRML browser plug-in. This approach requires the

client machine to have a Web browser with a VRML

plug-in. Furthermore, the client machine has to supply
Fig. 7. Commonly used approaches for Web-based visualization sys

server-based visualization—transfer image files, (c) client-based visua

software and data.
certain graphics power to support the rendering of

VRML objects.

Instead of rendering VRML scenes on the client side,

a different approach, shown in Fig. 7(b), does complete

visualization and rendering on the server side and simply

transfers resulting image files to the client. This

approach has several advantages. First, the client

machine has the lowest software and hardware require-

ments. Second, the system can create high quality images

by taking advantage of high quality rendering software

provided on the server machine. Third, the close

coupling of visualization and rendering improves inter-

action with underlying data.

Unlike server-based approaches, visualization is

completely done on the client side in client-based

approaches. For the system shown in Fig. 7(c), the

server machine only acts as a database to provide

visualization data.

The approach showed in Fig. 7(d) transfers both

application programs and visualization data over the

Web. The application programs are usually Java

applets. Java applets downloaded from the server

execute visualization on the client machine. Java 3D, a

low level 3D scene-graph based graphics programming

API, has to be installed on the client machine so that

Java applet can use Java 3D to render 3D graphics.

Ch OpenGL based Web visualization system uses the

server-based architecture shown in Fig. 7(b). OpenGL

application programs are installed on the visualization

server. These programs retrieve users’ data from HTML

documents and deliver resulting graphics image files to
tems: (a) Server-based visualization—transfer VRML files, (b)

lization—transfer data, (d) client-based visualization—transfer



ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339 337
users through Ch CGI. The Ch OpenGL based Web

visualization system offers the following features:
1.
 C/C++ visualization programs can directly be used

in Web-based visualization systems.
2.
 Ch OpenGL visualization server is application

transparent. It runs existing OpenGL application

programs without any modifications. Moreover,

server programs are platform-independent.
3.
 From the user’s point of view, server visualization

power can be accessed with the lowest requirements—

only a Web browser is needed.
4.
 From the system developer’s point of view, Ch

OpenGL visualization server programs are easy to

develop and maintain. Furthermore, Ch OpenGL

based Web visualization system avoids costly new

hardware and software investments. Existing compu-

ter facilities and network infrastructure can be used

to deliver server visualization power to remote users.

The software packages Ch, Ch OpenGL, and Ch CGI

toolkit are freely available and can be downloaded on

the Web [11].
Fig. 8. Modular structure of the visualization server.
5.2. Off-screen rendering interface and image file creation

The graphics generated by OpenGL is normally

rendered into a window. For Internet-based applica-

tions, however, the generated images are required to

render into an image buffer instead of a window. This is

called off-screen rendering. Off-screen rendering is

generally provided by OpenGL extensions to a native

window system, such as GLX in Unix or WGL in

Windows. The portability and performance trade-offs of

the off-screen rendering facilities for WGL, GLX and

Mesa were described in [17].

Mesa [18] is a 3D graphics library with APIs identical

to those of OpenGL. Mesa’s off-screen rendering

interface called OSMesa is an operating system and

window system independent facility for off-screen

rendering. The OSMesa is quite simple. It provides 3

functions for making off-screen renderings. Function

OSMesaCreateContext() creates an RGBA-mode con-

text. Function OSMesaMakeCurrent() binds an image

buffer to the context and makes it current. Function

OSMesaDestroyContext() destroys the context. The

default maximum image size is 1280� 1024 and it is

specified by macros MAX_WIDTH and MAX_-

HEIGHT in the header file src/config.h. If users want

to generate images larger than the default size, they have

to edit the src/config.h file to change MAX_WIDTH

and MAX_HEIGHT to the desired values and recom-

pile Mesa.

Since Mesa does not provide facilities for writing

image files from an off-screen image buffer, we created a

function called ChCreateImage() to achieve this pur-
pose. The prototype of function ChCreateImage() is as

follows:

int ChCreateImage(unsigned char *curpix, int pixelsize,

unsigned int width,

unsigned int height, int outputtype, y

/* int imagetype, char *imagename */).

This function takes the pointer to the off-screen image

buffer, the number of bytes for each pixel, the image

width, and the image height as the first four arguments.

The function can create two output image formats, and

the output format is decided by the fifth argument.

When the value of the fifth argument is CH_IMAGE_-

STREAM, the function simply outputs the resulting

image to the standard output stream. If the value of the

fifth argument is CH_IMAGE_FILE, the function saves

the image to a file. The image file format and name are

specified by the arguments imagetype and imagename. In

the current implementation, image files can be saved to

either PPM or PNG format. Two macros, CH_IMA-

GE_PPM and CH_IMAGE_PNG, represent PPM

format and PNG format, respectively.

5.3. Implementation of Ch OpenGL based visualization

server

The implementation of Ch OpenGL based visualiza-

tion server is based on an HTTP Web server as shown in

Fig. 8. By using a standard Web server, there is no need

for developing new server programs. Users’ requests are

sent to the server as HTML documents. Ch

CGI programs extract parameters that are encoded in

HTML documents and invoke corresponding OpenGL



ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339338
programs. Since we want to display resulting graphics

images in the user’s browser, the off-screen rendering

method described in the previous subsection has been

used in the visualization server implementation. Instead

of rendering 3D graphics generated by an OpenGL

program to a window, we use Mesa off-screen rendering

interface to save it to an off-screen image buffer. After

an image is created in the image buffer, a Ch image

creation API is used to convert image data to the PNG

format, and the resulting image is displayed on the user’s

Web page through Ch CGI.

CGI enables a Web server to receive clients’ requests,

execute application programs on the server, and send

execution results back to clients. HTML documents that

a Web server retrieves are static. With CGI, Web servers

are able to output dynamic information on Web pages

according to clients’ requests. Although a CGI program

can be written in any language that allows it to be

executed on the host, many people prefer to write CGI

programs using scripting languages since they are easier

to debug, modify, and maintain than a typical compiled

program. With Ch, C/C++ programs become scripts.

In addition, Ch CGI toolkit [15] provides four easy-to-

use classes, namely, CResponse, CRequest, CServer,

and CCookie, for CGI programming in Ch. These four

classes provide member functions similar to API in

active server page (ASP) and Java server page (JSP). The
Fig. 9. Web-based interactive confi
member functions of these classes can directly be

integrated into OpenGL C application programs. The

user’s inputs, through a fill-out form on the Web page,

are extracted by Ch CGI programs and passed to

OpenGL application programs directly. Similarly, out-

put images created by OpenGL application programs

can be used to generate dynamic Web pages inside the

application programs.

5.4. Web-based interactive 2D/3D graphics

Fig. 9 shows an example of using Ch OpenGL based

Web visualization system to interactively configure 3D

graphics. The source code for this example is included in

Ch OpenGL distribution. End-users can set the dimen-

sions of the output image, the colors of torus, cone,

sphere, and the background through a fill-out form.

These parameters are encoded by the client browser and

decoded by the Ch CGI member function CRequest::-

getFormNameValue(). Since Ch CGI toolkit is a set of

C++ classes, we can integrate CGI programs with

OpenGL application programs so that the system

parameters submitted by end-users can be passed to

application programs without any additional interface.

Once a user activates an application program, the

application program creates a new off-screen image

according to new parameters and sends the output
gurations of a 3D graphics.



ARTICLE IN PRESS
B. Chen, H.H. Cheng / Computers & Graphics 29 (2005) 331–339 339
resulting image as a standard output stream to a CGI

program to create a new Web page for display.
6. Future work

Ch supports X11/Motif and Win32 graphical APIs.

Ch OpenGL graphical animation in a standalone

computer works both in Unix and Windows platforms.

However, X11/Motif and Win32 graphical APIs are

platform dependent. Although GLUT is portable to

different platforms, its graphical user interface is very

limited. GTK+ is a powerful multi-platform toolkit for

creating graphical user interface. The current version of

Ch only contains GTK+ version 1.2.8, which does not

support GTKGLArea, a widget that allows OpenGL

commands within a GTK drawing area. When the Ch

binding to the latest GTK+ is available, graphical user

interface, such as menus, tool bars, entries, and dialogs,

can be integrated into OpenGL applications and allows

the user to dynamically manipulate graphics in hetero-

geneous platforms.

The Ch OpenGL Web application example given in

the article is based on Ch CGI. CGI is a very simple

interface for writing dynamic Web pages. The interface

is not meant to be high performance and complicated.

Applications with animation cannot be performed by

simple CGI interface. We are investigating appropriate

approaches to solve this problem. One possible solution

is to develop a browser plug-in with an embedded Ch to

perform visualization on the client machine as shown in

Fig. 7(d). Security is the major concern for this

approach. Safe Ch [11] and encryption might be

necessary for both code transmission and execution.
7. Conclusions

OpenGL is the most popular industry standard

graphical API for developing portable 2D/3D graphics

applications. Ch OpenGL further enhances the port-

ability of OpenGL. Ch OpenGL allows OpenGL

application developers to rapidly develop and deploy

applications across different platforms. It is the only

implementation that enables C/C++ OpenGL pro-

grams to run on different platforms without compilation

and linking processes. In addition, the syntax of Ch

OpenGL Toolkit is identical to C interface to OpenGL.

Ch OpenGL saves OpenGL programmers’ energies in

problem solving without struggling with mastering new

language syntax. Ch OpenGL Toolkit is embeddable.

Embedded Ch OpenGL graphics engine allows graphi-

cal application developers or users to dynamically

generate and manipulate graphics at run-time. Because

Ch OpenGL is truly platform independent, scriptable,

and embeddable, it is a good candidate for rapid
prototyping, mobile graphics applications, Web-based

applications, and classroom interactive presentation.

A methodology that can be used to implement a Web-

based visualization system based on Ch OpenGL and

Ch CGI was introduced in the article. The method

described in the article can be easily followed to create a

Web-based visualization system at low cost and with

minimal effort. The software packages Ch and Ch CGI

toolkit are freely available and can be downloaded from

the Web [11]. With Ch and Ch CGI, C/C++

visualization programs can directly be used in Web-

based visualization systems. Ch OpenGL based Web

visualization system offers the possibility for new forms

of customer service, such as interactive 3D product

configuration, ordering, and customer training. It is also

an ideal environment for teaching and learning compu-

ter graphics.
References

[1] Woo M, Neider J, Davis T, Shreiner D. OpenGL

programming guide: the official guide to learning OpenGL,

version 1.2, 3 ed. Reading: Addison-Wesley; 1999.

[2] Ch OpenGL toolkit, http://www.softintegration.com/

products/toolkit/opengl/, Softintegration, Inc.

[3] f90gl Fortran interface for OpenGL and GLUT, http://

math.nist.gov/f90gl/.

[4] A Fortran 90 Interface for OpenGL: revised January 1998.

NISTIR 6134, February 1998.

[5] The SUN/SGI Java/OpenGL bindings, https://jogl.dev.ja-

va.net/.

[6] Ousterhout JK. Scripting—higher level programming for

the 21st century. Computer 1998;31(3):23–30.

[7] Esperanca C. A Tk OpenGL widget. Proceedings of

USENIX Fifth Annual Tcl/TK Workshop. 1997.

[8] Paul B, Bederson B. Togl—a Tk OpenGL widget, http://

togl.sourceforge.net/.

[9] PyOpenGL 2.0–the PyOpenGL binding, http://pyopengl.

sourceforge.net/.

[10] Cheng HH. Scientific computing in the Ch programming

language. Scientific Programming 1993;2(3):49–75.

[11] Ch—an embeddable C/C++ interpreter, http://www.

softintegration.com/, Softintegration, Inc.

[12] Robins N. OpenGL tutorial, http://www.xmission.com/

�nate/tutors.html.

[13] Ch OpenGL toolkit demos, http://iel.ucdavis.edu/projects/

chopengl/.

[14] Yu Q, Chen B, Cheng HH. Web-based control system

design and analysis. IEEE Control Systems Magazine

2004;24(3):45–57.

[15] Ch CGI toolkit, http://www.softintegration.com/products/

toolkit/cgi, Softintegration, Inc.

[16] Ames AL, Nadeau DR, Moreland JL. The VRML

Sourcebook. New York: Wiley; 1996.

[17] Paul B. SIGGRAPH’97 Course 24: OpenGL and window

system integration—OpenGL/Mesa off-screen rendering,

1997, http://www.mesa3d.org/brianp/sig97/offscrn.htm.

[18] The Mesa 3D graphics library, http://www.mesa3d.org.

http://www.softintegration.com/products/toolkit/opengl/
http://www.softintegration.com/products/toolkit/opengl/
http://math.nist.gov/f90gl/
http://math.nist.gov/f90gl/
https://jogl.dev.java.net/
https://jogl.dev.java.net/
http://togl.sourceforge.net/
http://togl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://www.softintegration.com/
http://www.softintegration.com/
http://www.xmission.com/~nate/tutors.html
http://www.xmission.com/~nate/tutors.html
http://iel.ucdavis.edu/projects/chopengl/
http://iel.ucdavis.edu/projects/chopengl/
http://www.softintegration.com/products/toolkit/cgi
http://www.softintegration.com/products/toolkit/cgi
http://www.mesa3d.org/brianp/sig97/offscrn.htm
http://www.mesa3d.org

	Interpretive OpenGL for computer graphics
	Introduction
	Related work
	Ch and Ch OpenGL
	Potential applications of Ch OpenGL
	Run OpenGL programs interpretively
	Mobile graphics
	Web and network applications

	Ch OpenGL Web applications
	Different approaches of Web-based visualization systems
	Off-screen rendering interface and image file creation
	Implementation of Ch OpenGL based visualization server
	Web-based interactive 2D/3D graphics

	Future work
	Conclusions
	References


