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Background and Motivation
@43 Vehicle Population
s ‘@8 - 750, 000, 000+ vehicles in the world
’ « Expected 2 billions by the year of 2020

Fuel Consumption

» The transportation sector in the U.S.
accounts for two-thirds of our petroleum use

Environmental Emission

* Transportation produces 33% of US CO2
output

Fuel Economy
& Emission
Standards

Michiganiech



Model-Based Approach for Embedded
System Design
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Conventional V-model: a plan-driven process. The design process
follow the defined development stages in order

Model-based Design: provide an integrated environment for design,
simulation, automatic code generation, and validation.
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Salient Features of Model-Based Embedded
System Design Approach

» Platform for representing entire system: control strategy
and plant models

= Graphical representation: use graphical language to
describe implementation details

* Time saving: minimize software development time and
maximize software re-use. No hand coding, production
guality code is automatically generated

* Integrated development and validation cycles
= Communication among the team members is made easier




Hardware-In-the-Loop (HIL) Simulation

Electronic Control Unit

Micro-

[f: controller !]

Signal
Conditioning

Output
Drivers

MotoTron
Engine ECU

MicroAutoBox
Motor ECU

Electrical Signal e
Interface ! dSPACE HIL Simulator
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Automotive Plant Model
Real World

HIL System

« Generate an

environment where ECU
assumes that it is
running with a real
physical system.

HIL simulator simulates
the physical system that
IS under test. It generates
plant sensor signals and
capture actuator signals
from ECU.

Used to test control
strategies to be
Implemented on ECUSs.
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dSPACE HIL I/O Interface
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Model Development and HIL Simulation Process

Model
Development

Updating Auto-code
Model Generation

= Colors indicate the different softwares used in the steps.

= Blue : Simulink/Stateflow/dSPACE blocksets/Real-time Workshop
Model building, modification, and auto-code generation

* Yellow : dSPACE ModelDesk
Model Parameterization

* Red: dSPACE ControlDesk Next Generation
Real Time Calibration, Data Recording, File Export

Parameterization
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From MotoTron ECM:

* Ignition angle

* Injection angle and
duration

» Throttle valve, EGR
valve, pressure contro
valve position, and
PWM control signal

From MicroAutoBox II:
* Three phase PWM
signals

Actuator
Signals
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Parallel HEV Model

To MotoTron ECM:

* Engine torque request
Engine speed

Engine keys

Intake manifold
pressure and
temperature

Coolant temperature
Rail pressure

To MicroAutoBox II:

 Motor Torque
Request

* Motor Speed

 Three phase
current

 DC bus voltage

Sensor Signals

dSPACE HIL Simulator




Parameterize HEV Model Using

ModelDesk
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HIL Setup for the Parallel HEV

dSPACE HIL simulator
MicroAutoBox Il for motor controller

MotoTron 128 pin ECM for engine
controller

Tek L @ Stop t Pos: 0,000s
-

CH2 10.0% tA 5,00rms
Current Falder is '
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Signal for the Parallel HEV

Vehicle Reference Speed

Simulation Models

Actual Vehicle Speed

Shifting Maneuver

Gear Level, Clutch Command
——

L

ECU

Transmission

Clutch Command

Gear Ratio,

APP -
—> . .
. : SOC, Transmission '
Driver BPP | Hybrld Speed, Current Gear Vehicle
Controller |venicle Key ECU Level, Engine State Plant
— Mechanical Brake
Torque Request I A
Motor Speed, 3 phase
current, DC bus voltage
Motor Torque Request PWM Signals Captured
Measurable Engine Signals Engine
ICE Torque Request, Key Actuator
‘ l Signals
_ - v . Motor Torque
Engine Simulated | H|L Simulator | Request, Motor Motor
Engine Speed, 3 phase
Controller | sensor current, DC bus | Controller
_ 3 Signals i voltage
B " PN >
" Engine
Actuator PWM Signals
Signals <
—

MotoTron

MicroAutoBox Il

Signals between
Engine Controller
and Vehicle Plant

Sensor signals:

» AFM through throttle

* engine speed

* intake manifold
pressure and
temperature

» EGR valve position

* coolant temperature

Injection pressure...

Actuator signals:

* Ignition angle and
duration

* injection angle and
duration

« throttle valve, EGR
valve, and pressure
control valve position
PWM control signal
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Hybrid ECU

« Vehicle operating mode control

« Split powertrain torque between engine and electric machine to achieve
maximum fuel economy

« Control regenerative braking to recover as much energy as possible
and ensure braking performance at the same time
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Vehicle Mode and Energy Flow

(a) Electric only
mode

(b) Battery
charging
mode

(c) Engine only
model

&R (d) Hybrid mode.

B (e) Regenerative

B braking mode




Overview of Engine ECU
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Motor Controller

To Inverter

d axis

- O »
E-machine — ) Controller
Torque Iq
Request Request q axis
Transform ———&) >
— " T controller

Vd - d,q V3
Vb

Vg R Vc

k.
h

Limitation

¥

+—| Duty Cycle

h 4

Decoupling/

k.
[+}]
-
o
g

Vbc

Current
Feedbackl
— | d

-

-
[
i
B
-

o
o
o

o lq e— |b
—— ¢

a,b,c
n Speed & Position Feedback

17




dSPACE Experiment Software - ControlDesk

APP, BPP, engine
speed, and torque
(dyno) settings

Real-time display of
vehicle speed, APP, and
Engine Speed Vehicle Speed BPP positions
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Simulation Results: Vehicle Mode Control

Hybrid ECU control logic is
modified to avoid frequent mode

0 Battery charging h
1 Engine only change.
2 Hybrid mode  Improved vehicle performance is
3 Motor only shown in enlarged subfigures.
4 Regenerative breaking  \/ehjcle operation modes in UDDS drive cycle
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Simulation Results: Power and Energy

Distribution
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Simulation Results: Regenerative Breaking

 Designed to recover as o 1 T
much as possible s | di |

 Disabled whenv <0.1 s Nbl "
km/h or SOC reached g o] N
charging limit 2

« Limited by maximum : I
motor power " L1

« 81% braking energy was “o 100 w0 400 500
recovered, total 0.4638 |
kKWh Braking power in US06 drive cycle
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Simulation Results: Engine States

State value 1 2 3 4

Engine state Idling Engine Traction & Traction with
Traction only charging Battery motor
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Simulation Results: Engine Operating
Region

« Engine operating points: HEV (left), conventional vehicle (right)

« Motor provides traction when torque demand below 100 Nm.
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Conclusions

* Model-based design allows ECU development
with vehicle plant models in the same
environment.

» Hardware-in-the-loop simulation enable very
short development times with parallel control
system validation.

 Model-based design HIL simulation are
suitable for the development of complex
control systems for the clean vehicles.
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