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Top four emitters in 2011 covered 62% of global emissions

China (28%), United States (16%), EU27 (11%), India (7%)

CO, emissions (tC?bersoh/yr)
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Plots from Global Carbon Project report 2012 2
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Seven Joint Clean Energy Initiatives (2009

Electric Vehicles Initiative Shale Gas Resource Initiative

e
Energy Efficiency Action Plan © Energy Cooperation Program
%ﬁ__

Renewable Energy Partnership U.S.-China Clean Energy Research

Center

& e & ©

21st Century Coal
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Degradation: Combine modeling and advanced
characterization to understand degradation
mechanisms in Li-ion batteries.

Modeling, Controls, and Implementation: To
extend battery life, develop battery management
systems with on-board balancing technologies.
Review protocols for battery testing & safety.
Explore pathways for reuse & recycling of batteries.

New Chemistries: Advance Li-air and Li-sulfur
chemistries towards commercial viability by
revealing limiting phenomena and developing
materials/architectures that overcome these
obstacles.
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Degradation

Babu (OSU)
Bhushan (OSU)
Conlisk (OSU)

Cao & Canova (OSU)
Daniel (ORNL)
Leung (Sandia)
Amine (ANL)

Modeling &

Controls
Bernstein & Stein (UM)

Protocols, Recycling

Bloom, Gaines, Sullivan (ANL)

New Chemistries
Siegel (UM)
Van der Ven (UM)
Shao-Horn (MIT)
Ceder (MIT)

Degradation
Qiu (THU)

Modeling &

Controls
Lu (THU)

Protocols, Recycling
Hua (THU)

New Chemistries
Wau (BIT)
Kang (THU)
Qui (THU)
He (THU)
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e NDP Measurement Techniques for Improved
Electrochemical Performance and Aging Models of Li-ion
Batteries (Canavo, Cao, Nagpure)

e Data-Based Techniques for Battery-Health Prediction (Stein,
Bernstein, Ersal)

e Battery State of Health Estimation Based on Incremental
Capacity Analysis (Sun and Peng)
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- 2 Sample is bombarded with a low
. Depth = e
< - i, energy neutrons (energy ~ 0.025
— T Y Newtron 1 T . eV)
i V4
Ei—'l
Li+n->*He (2055 keV) +Triton (2727 ke‘-'}/ - @ Difference between the residual
- ,—M—--n ke . .
/ N il e N energy of the particle emerging
sk ey ‘ Neutrons
‘_‘Hgs‘,’ “Triton ‘ — from the surface and energy of
L uced spectrum of Li . . « ..
it Ssmaa e | the particle at its origin is
Li-ion battery cathode AE,, B e S measu red;
Charge particle detector
jﬂ @ Relate to the depth of the
Vacuum, no more E lost

reacting lithium atom and Li
concentration.

Advantages:

2 Li cross-section for NDP is 940 barn (1 barn = 102 cm?), one of the largest among the
light elements.

2 Direct quantitative measurement of lithium concentration possible.

2 Depth resolution of 100 nm possible.

2 Non-destructive sample preparation necessary.

2 Technique is well known and largely applied for ex-situ characterization of Li-ion cells. n
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' LiFePg, y.

Graphite

Temperature
Cells C-rate SOC (°C) Ah Removed
co unaged 0
C2-1-1 2 0-10% 55 5830
C4-1-1 4 0-10% 55 5540
C7-3-1 ~7 68% +7% 45 3441

the Li concentration in electrodes harvested from aged cells.

acquisition system with solid state energy detectors.

1.5m

2 The NDP facility at OSU was benchmarked by conducting measurements of

© The same samples were previously tested at the NDP facility at the National
Institute of Standards (NIST).

© OSU-NDP facility has low thermal neutron flux (8.5 x 10® n/cm? s) as
compared to NIST facility (1.2 x 10° n/cm? s), but has an improved

14
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Example: Comparison of NDP Results for OSU and NIST Facility
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2 The profiles match in terms of shape, concentration, and depth values. Difference in the
profiles close to the surface (first few nanometers) is caused by error in aligning the zero
depth with the first channel in the detector.

© Even though there is significant difference in the count rate at NIST and at OSU due to the
difference in the available neutron flux, the eight solid state detectors at OSU provide
significant number of counts to establish accurate concentration profiles along the depth of

the samples.

2 Analysis is currently being repeated for all samples tested at NIST. "



© Continued improvement of the facility will enable in-situ
testing not in vacuum

2Full calibration against NIST test results

©Validate prototype cells by comparing against
conventional half-cell;

©Use experimental results to improve Li-ion electrochemical
models.

16
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Battery Model
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Cylindrical lithium-ion battery

Top Cap
(Positive Terminal)

Lithium-ion rechargeable battery
Charge mechanism 4

Separator

Negative Positive

Electrol

yte - .
: B P AN Terminal Terminal
(Polymer battery: gel polymer electrolyte) & StUTTWe J,l (X ) J'_g (X ) J'l (X )

Doyle, M., Fuller, T., and Newman, J., 1993. “Modeling of
galvanostaic charge and discharge of the lithium/polymer/insertion

cell”. J. Electrochemical Society, 140, June, pp. 1526-1533. I } } }L
Fuller, T., Doyle, M., and Newman, J., 1994. “Simulation and Anode Separator Cathode
optimization of the dual lithium ion insertion cell”. J. 18

Electrochemical Society, 141, January, pp. 1-10.
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I Ramadass et al. Health Model

| -Power Fade through increased resistance

| *Capacity fade through consumed Li-ions

I *Driven by side reaction intercalation
current

Ramadass, P., Haran, B., Gomadam, P. M., White, R., and Popov, B. N., 2004. “Development of first principles capacity fade model for Li-ion cells/y
J. Electrochemical Society, 151(2), January, pp. A196—A203.
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Ramadass, P., Haran, B., Gomadam, P. M., White, R., and Popoyv, B. N., 2004. “Development of first principles capacity fade model for Li-ion cellsj
J. Electrochemical Society, 151(2), January, pp. A196—A203.
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1: CC discharge
2: CV discharge
3: CCcharge
4: CV charge

Film resistance [Qm™]

Estimated value

| | -0 True value
35 I I 1 I
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333
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WHITE REGIONS:
Data contains
enough
information for
identification

GRAY REGIONS:
Data does not

contain enough
information for
identification

RCSI works well during the constant current charging phase,
because this is the only phase where battery SoH is identifiable. 2



Cells inside Chamber

Thermal Chamber

manufactured by A123 Systems.

Typical Capacity

1.1Ah

Nominal Voltage

3.3V

Constant Voltage

Charging Voltage 3.7V

Power

3000W/Kg, 5800W/L

! ' Cable
TEERER S

Computer

Ethernet

Arbin BT 2000 Tester
- X

1. X.Huy,S.Li, and H. Peng. “A comparative study of equivalent circuit models for li-ion
batteries.” J. Power Sources, 198:359-367, 2012.

Repeat every 2 weeks

v (Static Capacity Test )
Characterization Test ¥ Rest
[ (10°C) j (" Hybrid pulse test )
Rest . ¥ _Rest
(" Resistance Test )
Characterization Test ¥ Rest
[ (35°C) j ( DSTtest )
v Rest
y Rt (" FUDStest )
Characterization Test
e
Rest
Impedance Test ( Static Capacity Test )
(Ambient ~ 22 °C) Rest
Rest cCach
Aging Cycle ( C arge )
( (22 °C) j &CC dllscharge
\ ) Repeat _v_
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p . p

— Transforms plateaus on V-Q curve into identifiable peaks on
incremental capacity curve (dQ/dV)

— Reflects the staging phenomena in lithium intercalation process

— Amplified sensitivity
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cell”, J. Power Sources 194:541-549,2009.

10

. M. Dubarry, B.Y. Liaw, “Identify capacity fading mechanism in a commercial LiFePO4
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e Full charging/discharging V-Q curves not available in real-life operation

* |CA performed with partially charging data
— Numerical derivative
— Polynomial curve fitting (5% order)

16 ;
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C. Weng, Y. Cui, J. Sun, and H. Peng. “On-board state of health monitoring of lithium-ion batteries using incremental 25

capacity analysis with support vector regression.” J. Power Sources, 235:36—-44, 2013.
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e Numerical Derivative ¢ SVR Basics:
— Applicable to data set at any capacity range — Phenomenological and data driven
— Computationally expensive — Model derived through an optimization
— Resulting curves are noisy process
. . — Non-parametric function estimation
* Polynomial Curve Fitting g o o
h and suitable f o Ivsi — Excellent approximation and generalization
— Smooth and suitable for quantitative analysis capabilities
— Eflelent identification algorithm is readily _ Low sparsity and model complexity
available
— Highly sensitive to the selection of data set N
e A more robust and flexible method is f(@n) = Zﬁik(%xn)
needed =1
| N
‘ . . - ,
/—~ i minmize 18|l + w Z&n
e n=1
| & (
i — Yn — Zil Bik(xi, x,) <24+ &y
| . subject to < Zfil Bik(xi. 20) — yn < 2+ &,

x En >0 26

Y



* Apply the SVR algorithm iteratively as battery ages
 Robust in effective aging signature extraction
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C. Weng, Y. Cui, J. Sun, and H. Peng. “On-board state of health monitoring of lithium-ion batteries using incremental

capacity analysis with support vector regression.” J. Power Sources, 235:36—-44, 2013.
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e The SVR model built upon the data from one single cell is able to
predict the capacity fading of 7 other cells with less than1% error.

1.02 1.02
B o=
+H
> 0.98 ‘- > 0.98
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2 0.94 ‘ g 0.94
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0.02}57- ’
: y 4 0.9212 === = correlation identified from battery #7 data |
"4 B data of battery #7 s, O QO measured data from other batteries
=== = jdentified correlation B outliers in the data
0.9 L L 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1 11 0'%_4 05 0.6 0.7 0.8 0.9 1 1.1
Normalized IC Peak Normalized IC Peak
Correlation identified from cell #7 Used for capacity fading prediction of other cells
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e CERC-CVC is a US-China collaborative team with
capabilities to address a broad range of battery-
related R&D:

— Near term: Safety, implementation, degradation,
system modeling, controls

— Future: New chemistries

 Responsive to industrial inputs and needs

29



34 CERC-CVC annual meeting on August 19-20
2013 in Beijing!

30
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