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Motivation of CERC

Plots from Global Carbon Project report 2012 2



President Obama’s 
Initiatives
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Creation of CERCs

US-China Strategic Forum on Clean Energy Cooperation, January 18, 2011
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Academic & National 
Lab Partners

U.S. 

China
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Industrial Partners

U.S. 

China
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Research Thrust Areas

1. Advanced 
Batteries and 
Energy 
Conversion

2. Advanced 
Biofuels, Clean 
Combustion and 
APU

3. Vehicle 
Electrification

6. Energy 
Systems Analysis  
Technology 
Roadmaps and 
Policies 

5. Vehicle-Grid 
Integration

4. Lightweight 
Structures
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Scope of CERC-CVC 
Battery Thrust Area

• Degradation: Combine modeling and advanced 
characterization to understand degradation 
mechanisms in Li-ion batteries.

• Modeling, Controls, and Implementation: To 
extend battery life, develop battery management 
systems with on-board balancing technologies. 
Review protocols for battery testing & safety. 
Explore pathways for reuse & recycling of batteries.

• New Chemistries: Advance Li-air and Li-sulfur 
chemistries towards commercial viability by 
revealing limiting phenomena and developing 
materials/architectures that overcome these 
obstacles.
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Projects and Personnel

Degradation
Babu (OSU)

Bhushan (OSU)
Conlisk (OSU)

Cao & Canova (OSU)
Daniel (ORNL)
Leung (Sandia)
Amine (ANL)

Modeling & 
Controls

Bernstein & Stein (UM)

Protocols, Recycling
Bloom, Gaines, Sullivan (ANL)

Degradation
Qiu (THU)

Modeling & 
Controls

Lu (THU)

Protocols, Recycling
Hua (THU)

New Chemistries
Siegel (UM)

Van der Ven (UM)
Shao-Horn (MIT)

Ceder (MIT)

New Chemistries
Wu (BIT)

Kang (THU)
Qui (THU)
He (THU)
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Three Highlighted Projects

• NDP Measurement Techniques for Improved 
Electrochemical Performance and Aging Models of Li-ion 
Batteries (Canavo, Cao, Nagpure)

• Data-Based Techniques for Battery-Health Prediction (Stein, 
Bernstein, Ersal)

• Battery State of Health Estimation Based on Incremental 
Capacity Analysis (Sun and Peng)



Neutron Depth Profiling:
Operating Principles

Sample is bombarded with a low 
energy neutrons (energy ~ 0.025 
eV);
Difference between the residual 
energy of the particle emerging 
from the surface and energy of 
the particle at its origin is 
measured;
Relate to the depth of the 
reacting lithium atom and Li 
concentration.

Advantages:
Li cross-section for NDP is 940 barn (1 barn = 10-24 cm2), one of the largest among the 
light elements.
Direct quantitative measurement of lithium concentration possible.
Depth resolution of 100 nm possible.
Non-destructive sample preparation necessary.
Technique is well known and largely applied for ex-situ characterization of Li-ion cells. 11



First Year Milestones:
Benchmarking of OSU-NDP

Cells C-rate SOC
Temperature
(°C) Ah Removed

C0 unaged - - 0

C2-1-1 2 0-10% 55 5830

C4-1-1 4 0-10% 55 5540

C7-3-1 ~7 68% ±7% 45 3441

The NDP facility at OSU was benchmarked by conducting measurements of 
the Li concentration in electrodes harvested from aged cells.
The same samples were previously tested at the NDP facility at the National 
Institute of Standards (NIST).
OSU-NDP facility has low thermal neutron flux (8.5 x 106 n/cm2 s) as 
compared to NIST facility (1.2 x 109 n/cm2 s), but has an improved 
acquisition system with solid state energy detectors.

LiFePO4
Graphite
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First Year Milestones:
Benchmarking of OSU-NDP

The profiles match in terms of shape, concentration, and depth values. Difference in the 
profiles close to the surface (first few nanometers) is caused by error in aligning  the zero 
depth with the first channel in the detector. 
Even though there is significant difference in the count rate at NIST and at OSU due to the 
difference in the available neutron flux, the eight solid state detectors at OSU provide 
significant number of counts to establish accurate concentration profiles along the depth of 
the samples.
Analysis is currently being repeated for all samples tested at NIST. 

Example: Comparison of NDP Results for OSU and NIST Facility
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Future Outlook

Continued improvement of the facility will enable in-situ 
testing not in vacuum

Full calibration against NIST test results

Validate prototype cells by comparing  against 
conventional half-cell;

Use experimental results to improve Li-ion electrochemical 
models. 
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Approach: Retrospective 
Cost Subsystem 

Identification (RCSI)

RCSI is a technique 
for data-based 
modeling that can 
identify a dynamic 
subsystem whose 
inputs and outputs 
are not measured.

RCSI is based on 
RCAC (Retrospective 
Cost Based Adaptive 
Control) Technique
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The Main System Model:
The Doyle-Fuller-Newman 

Model

Doyle, M., Fuller, T., and Newman, J., 1993. “Modeling of 
galvanostaic charge and discharge of the lithium/polymer/insertion 
cell”. J. Electrochemical Society, 140, June, pp. 1526–1533.

Fuller, T., Doyle, M., and Newman, J., 1994. “Simulation and 
optimization of the dual lithium ion insertion cell”. J. 
Electrochemical Society, 141, January, pp. 1–10.
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The Subsystem Model: 
The Ramadass et al. Health 

Model

Side Reaction 
Intercalation Current JS

Resistive Film δfilm

Ramadass, P., Haran, B., Gomadam, P. M., White, R., and Popov, B. N., 2004. “Development of first principles capacity fade model for Li-ion cells”. 
J. Electrochemical Society, 151(2), January, pp. A196–A203.

Ramadass et al. Health Model
•Power Fade through increased resistance
•Capacity fade through consumed Li-ions
•Driven by side reaction intercalation 
current
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Health Model 
Identification

Side Reaction 
Intercalation Current JS

Ramadass, P., Haran, B., Gomadam, P. M., White, R., and Popov, B. N., 2004. “Development of first principles capacity fade model for Li-ion cells”. 
J. Electrochemical Society, 151(2), January, pp. A196–A203.

RCSI Submodel Identification
•Identifies submodel and state
•Uses error signals to tune submodel
•Driven by side reaction intercalation 
current

Unknown 
Submodel
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RCSI Film 
Identification

Without an identification technique, we have no knowledge 
about the battery SoH.

RCSI provides us with an estimate for how the battery SoH
changes as measured by the film growth.

The estimates are very close to the true values. True values 
are not available in practice, but the estimates are.

The estimation is accurate during the constant current charging 
phase when film growth is most significant.

1: CC discharge
2: CV discharge
3: CC charge
4: CV charge



Identifiability

RCSI works well during the constant current charging phase, 
because this is the only phase where battery SoH is identifiable.

WHITE REGIONS: 
Data contains 
enough 
information for 
identification

GRAY REGIONS: 
Data does not 
contain enough 
information for 
identification
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Experiment Set-up

Arbin BT 2000 Tester

Ethernet 
Cable

Switch board

Thermal Chamber

Computer

Cells inside Chamber
Characterization Test 

(10 ºC)
Rest

Characterization Test
(35 ºC)

Characterization Test
(22 ºC)

Impedance Test
(Ambient ~ 22 ºC)

Aging Cycle
(22  ºC)

Rest

Rest

Rest

R
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t e
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ry

 2
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ks

Static Capacity Test
Rest

Hybrid pulse test

Resistance Test

DST test

FUDS test

Rest

Rest

Rest

Static Capacity Test
Rest

CC-charge 
& CC-discharge

Repeat

Typical Capacity 1.1Ah
Nominal Voltage 3.3V
Constant Voltage Charging Voltage 3.7V
Power 3000W/Kg, 5800W/L

Spec for Li FePO4 cells (APR18650M1) 
manufactured by A123 Systems.

1. X. Hu, S. Li, and H. Peng. “A comparative study of equivalent circuit models for li-ion 
batteries.” J. Power Sources, 198:359–367, 2012.
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Incremental Capacity 
Analysis

– Transforms plateaus on V-Q curve into identifiable peaks on 
incremental capacity curve (dQ/dV)

– Reflects the staging phenomena in lithium intercalation process
– Amplified sensitivity

1. M. Dubarry, B.Y. Liaw, “Identify capacity fading mechanism in a commercial LiFePO4 
cell”, J. Power Sources 194:541–549,2009. 24



ICA with Conventional 
Data Processing Methods

• Full charging/discharging V-Q curves not available in real-life operation
• ICA performed with partially charging data

– Numerical derivative
– Polynomial curve fitting (5th order)

Results by numerical derivative Results by polynomial curve fitting

1. C. Weng, Y. Cui, J. Sun, and H. Peng. “On-board state of health monitoring of lithium-ion batteries using incremental 
capacity analysis with support vector regression.” J. Power Sources, 235:36–44, 2013.
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Why Support Vector 
Regression

• Numerical Derivative
– Applicable to data set at any capacity range
– Computationally expensive
– Resulting curves are noisy

• Polynomial Curve Fitting
– Smooth and suitable for quantitative analysis
– Efficient identification algorithm is readily 

available
– Highly sensitive to the selection of data set

• A more robust and flexible method is 
needed

SVR Basics:
– Phenomenological and data driven
– Model derived through an optimization 

process
– Non-parametric function estimation
– Excellent approximation and generalization 

capabilities
– Low sparsity and model complexity

ξ ξ
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ICA Using SVR

• Apply the SVR algorithm iteratively as battery ages
• Robust in effective aging signature extraction
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1. C. Weng, Y. Cui, J. Sun, and H. Peng. “On-board state of health monitoring of lithium-ion batteries using incremental 
capacity analysis with support vector regression.” J. Power Sources, 235:36–44, 2013.
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Correlation between 
Normalized Capacity and IC 

Peak Value
• The SVR model built upon the data from one single cell is able to 

predict the capacity fading of 7 other cells with less than1% error.
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Concluding Remarks

• CERC-CVC is a US-China collaborative team with 
capabilities to address a broad range of battery-
related R&D:
– Near term: Safety, implementation, degradation, 

system modeling, controls
– Future: New chemistries

• Responsive to industrial inputs and needs
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The Ultimate 
Stakeholders

3rd CERC-CVC annual meeting on August 19-20 
2013 in Beijing! 
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