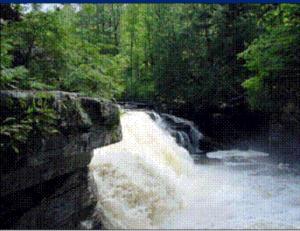
Environmental Life Cycle Assessments of Biofuels www.sfi.mtu.edu

David R. Shonnard, Ph.D.

Robbins Chair Professor Department of Chemical Engineering Michigan Technological University Director, Sustainable Futures Institute


drshonna@mtu.edu

Michigan Tech

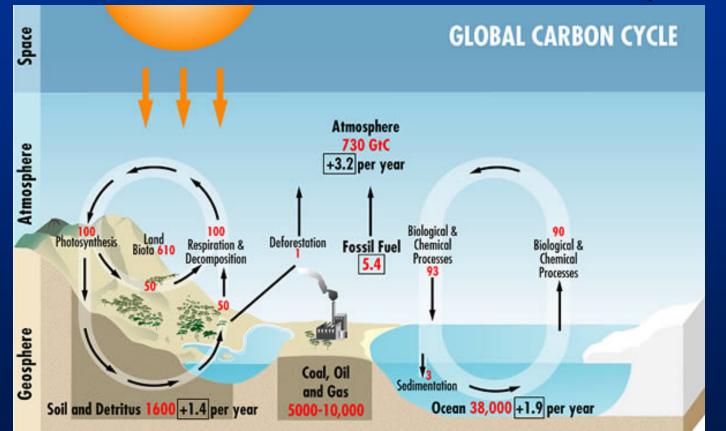
Michigan Tech Statistics

Established in 1885 to support the Mining Industry
 7000 students (~1300 grad students)

- ~60% engineering students one of the largest engineering Colleges in U.S.
- 1st Tier of US National Universities (US News, 2012)
 64th Best in Engineering (US News, 2012)
 Top 10 Technological Universities (Money)
 Top 10 Safest University in USA
 95% Placement Rate for Graduate Employment
 Intellectual Property 3x national average in generating licenses

Overview of Presentation

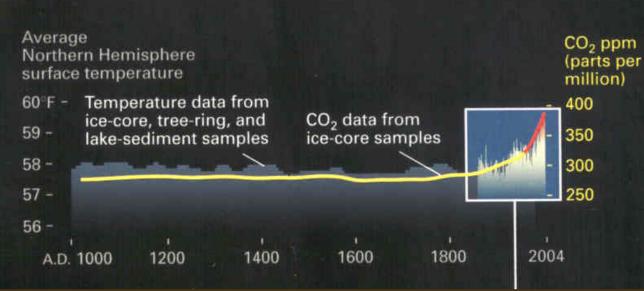
- Introduction to Energy Sustainability
- Sustainability Issues for Biofuels and Bioenergy
- Biomass Feedstock Availability (USA and China)
- Conversion Pathways for Biofuels
- Introduction to Biofuel Life Cycle Assessment (LCA)
- Overview of LCA Results
- Integrated Biofuel Research with Examples



Managing the Carbon Cycle: A Sustainable Energy Challenge

From http://www.bom.gov.au/info/climate/change/gallery/index.shtml

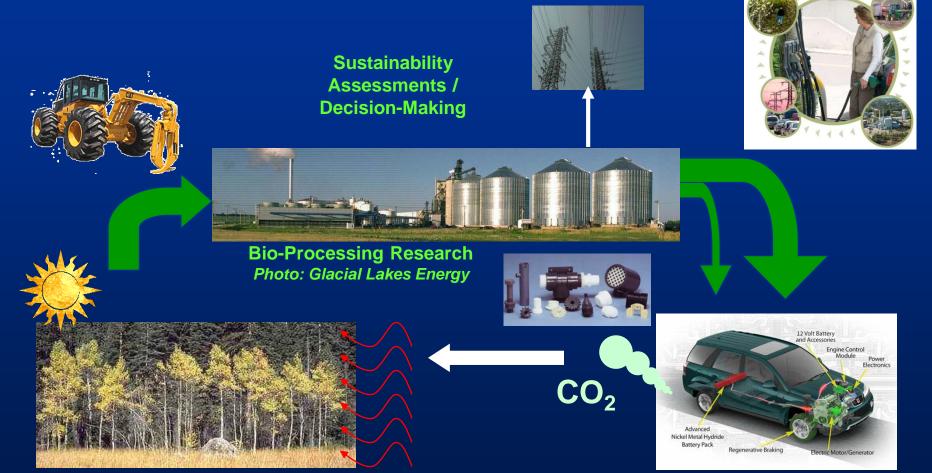
Combustion of Fossil Fuels acts as a Carbon Pump



CO₂ and Temperature in the Northern Hemisphere are Rising

Temperature rising

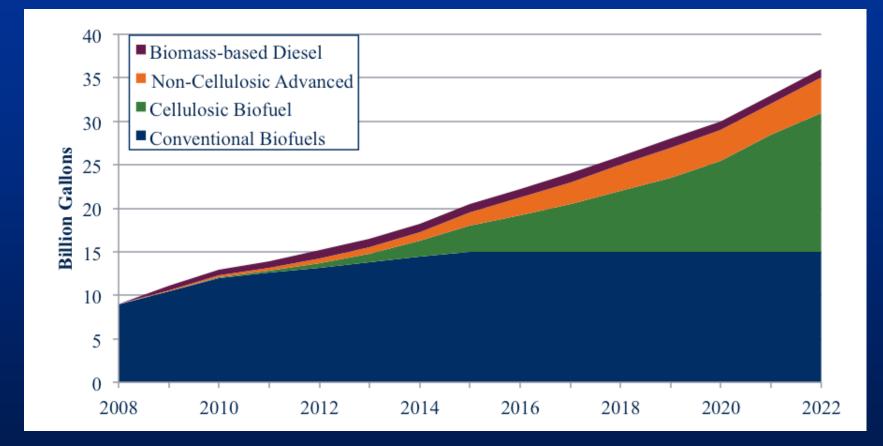
Warming trends The concentration of carbon dioxide in the atmosphere helps determine Earth's surface temperature. Both CO₂ and temperature have risen sharply since 1950.


National Geographic, September 2004, pg 20, National Geographic Society, Washington, D.C.

Wood-to-Wheels (W2W) Concept

Research Thematic Areas

Woody Biomass Resource Research



Sustainable Futures Institute www.sfi.mtu.edu

Vehicle Systems Research

Renewable Fuel Standard in USA

But, How Much Biomass is Available on an Annual Basis in the USA?

Table ES.1Summary of Currently Used and Potential Forest and Agriculture Biomass at \$60 per
Dry Ton or Less, under Baseline and High-Yield Scenario Assumptions

Feedstock	2012	2017	2022	2030	
	Million dry tons				
High-yield scenario (2%–4%)					
Forest resources currently used	129	182	210	226	
Forest biomass & waste resource potential	97	98	100	102	
Agricultural resources currently used	85	103	103	103	
Agricultural biomass & waste resource potential ^b	244	310	346	404	
Energy crops	0	139–180	410-564	540-799	
Total currently used	214	284	312	328	
Total potential	340	547–588	855-1009	1046–1305	
Total high-yiəld (2-4%)	555	831–872	1168–1322	1374–1633	

Sustainable Futures Institute www.sfi.mtu.edu

U.S. Department of Energy. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes, ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.

But, How Much Biomass is Available on an Annual Basis in the USA?

Table ES.1Summary of Currently Used and Potential Forest and Agriculture Biomass at \$60 per
Dry Ton or Less, under Baseline and High-Yield Scenario Assumptions

Feedstock	2012	2017	2022	2030		
	Million dry tons					
High-yiəld scənario (2%–4%)						
Forest resources currently used	•Oil seed crops (rapeseed, etc.)		· · · · · · · · · · · · · · · · · · ·	226		
Forest biomass & waste resource potential	 Corn stover (st Wheat straw 	alk of the plant	t) 100	102		
Agricultural resources currently use	ed	103	103	103		
Agricultural biomass & waste resource potential ^b	244	310	346	404		
Energy crops	0	139–180	410–564	540–799		
Total currently used	214	284	312	328		
Total potential	340	547–588	855-1009	1046–1305		
Total high-yield (2-4%)	555	831–872	1168–1322	1374–1633		

Sustainable Futures Institute www.sfi.mtu.edu

U.S. Department of Energy. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes, ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.

But, How Much Biomass is Available on an Annual Basis in the USA?

Table ES.1Summary of Currently Used and Potential Forest and Agriculture Biomass at \$60 per
Dry Ton or Less, under Baseline and High-Yield Scenario Assumptions

Feedstock	2012	2017	2022	2030	
		Million dry tons			
High-yield scenario (2%–4%)					
Forest resources currently used	129	182	210	226	
Forest biomass & waste resource potential	es miscanthus	~?	100	102	
	Switchgrass, miscanthus Hybrid poplar and willow		103	103	
Agricultural bioma resource potential ^b	277	UTU	346	404	
Energy crops	0	139–180	410–564	540–799	
Total currently used	214	284	312	328	
Total potential	340	547–588	855–1009	1046–1305	
Total high-yiəld (2-4%)	555	831–872	1168–1322	1374–1633	

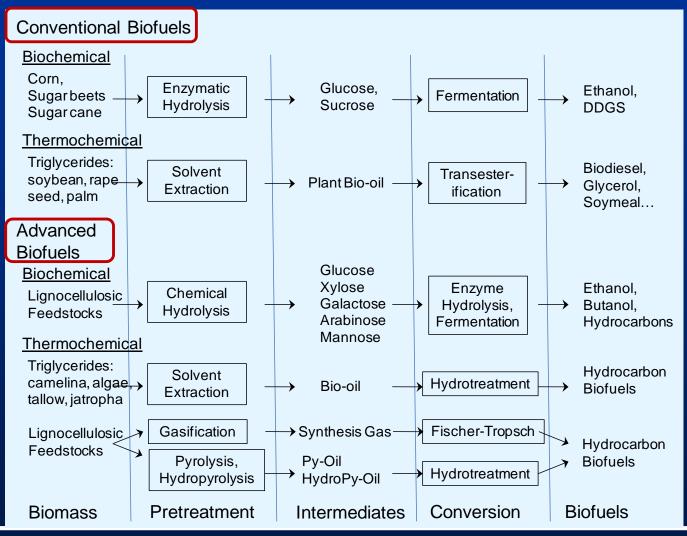
Sustainable Futures Institute www.sfi.mtu.edu

U.S. Department of Energy. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes, ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.

And, How Much Biomass is Available on an Annual Basis in China?

The Renewable Energy Law of China

35 million hectares total area for potential biofuel production – Type I-III lands 175 million tons ethanol assuming 5 t ethanol/ha (sweet sorgum)


Biomass Initiative Inventory in China, Task Force on Sustainability of GBEP, Wang and Ma, 2008

Biofuel Conversion Pathways

Shonnard, D.R., Campbell, M. Brodeur-, Martin-Garcia, A.R., Kalnes, T.K., (2012), Chemical Engineering of Bioenergy Plants: Concepts and Strategies, in Vol. 1 Handbook of Bioenergy Crop Plants, Kole, C., Joshi, C., Shonnard, D.R. Eds., CRC Press-Taylor and Francis, Boca Raton, FL, 133-164

Categories for indicators of environmental and socioeconomic sustainability

Greenhouse gas emissions

Social well being

Social acceptability

Water quality and quantity

Soil quality

Resource conservation

External trade

> Energy security

Profitability

McBride et al. (2011) **Ecological Indicators** 11:1277-1289

Air quality

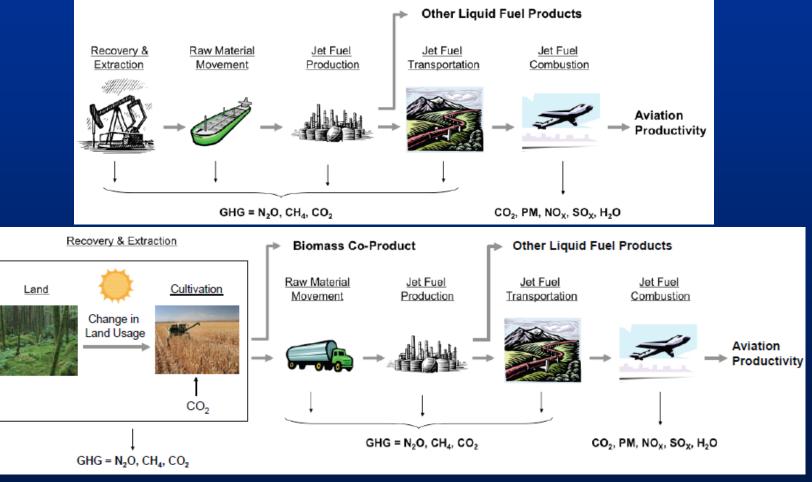
Productivity

Biological

diversity

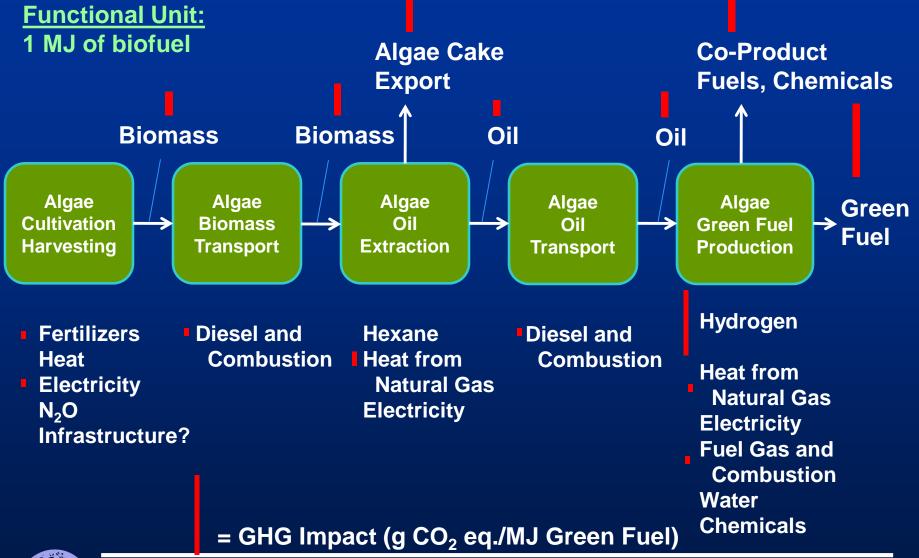
Oak Ridge National Laboratory http://www.ornl.gov/sci/ees/cbes/

Dale et al. (In review) **Ecological Indicators**

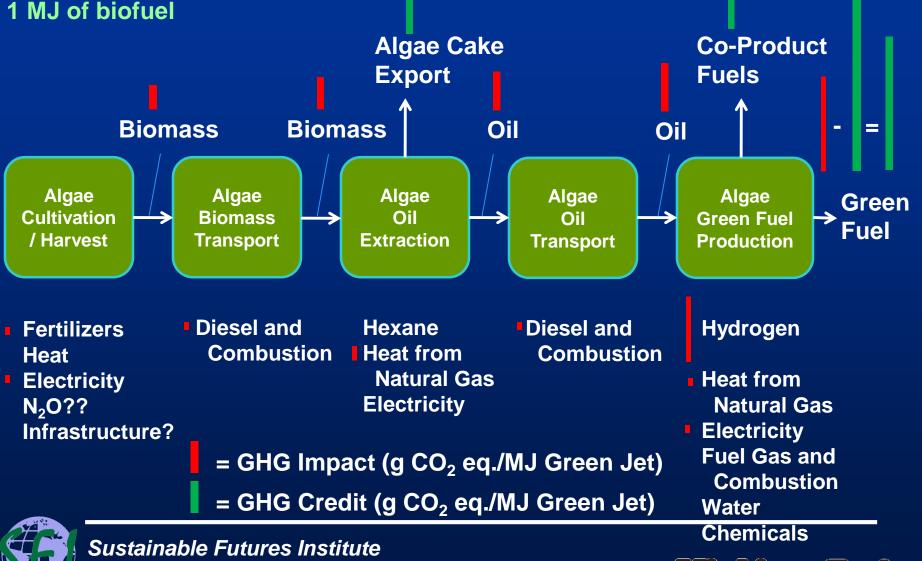

Example of one category:	soil quality
Indicator	<u>Units</u>
Total organic carbon (TOC)	Mg/ha
Total nitrogen (N)	Mg/ha
Extractable phosphorus (P)	Mg/ha
Bulk density	g/cm ³

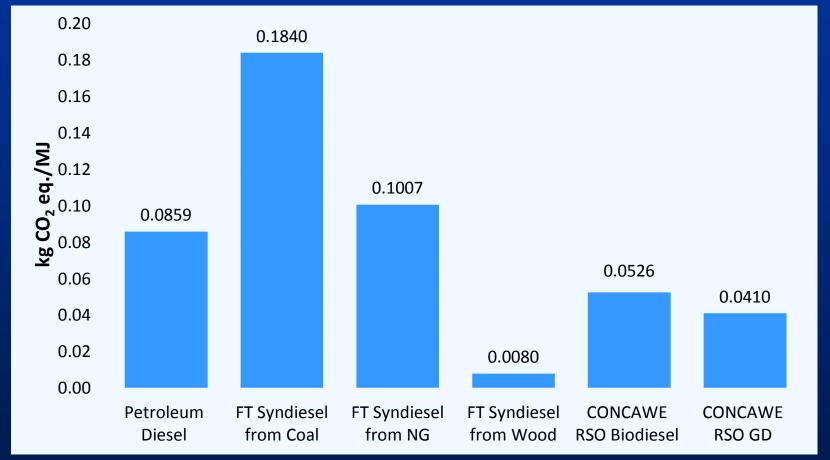
Introduction: Biofuel Environmental LCA

Stratton, Wong, and Heilman , MIT, , PARTNER Project 28 Report: Life Cycle Greenhouse Gas Emissions from Alternative Jet Fuels



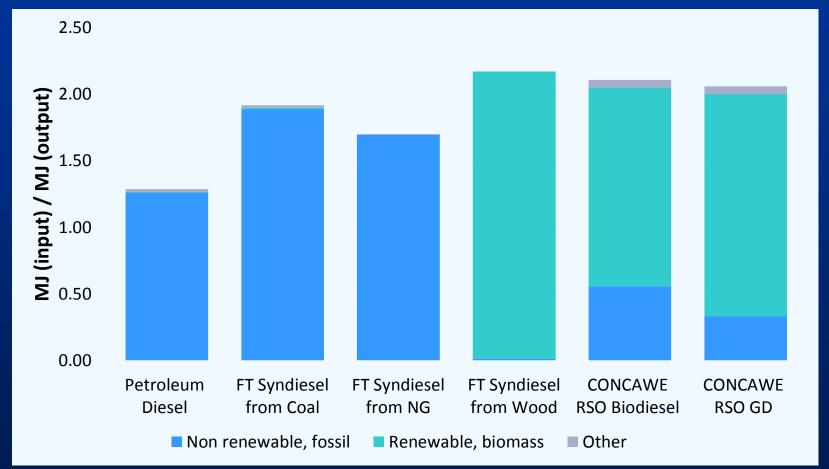
Energy Allocation Method (DOE, EC)




Displacement Allocation Method (EPA) Functional Unit:

www.sfi.mtu.edu

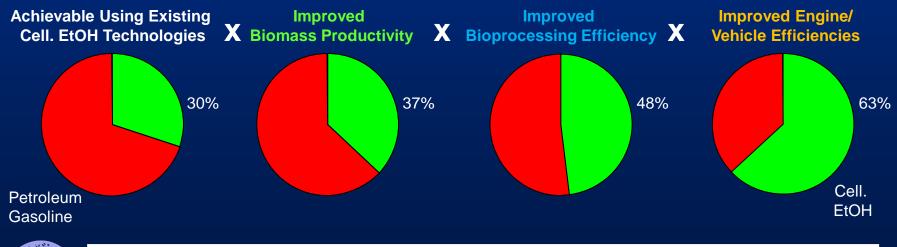
Some Biofuel LCA Results Greenhouse Gas (GHG) Emissions



Koers, K.P., Kalnes, T.N., Marker, T., Shonnard, D.R. (2009), Green diesel: A technoeconomic and environmental life cycle comparison to biodiesel and syndiesel, Environmental Progress & Sustainable Energy, 28(1), 111-120

Some Biofuel LCA Results Cumulative Energy Demand

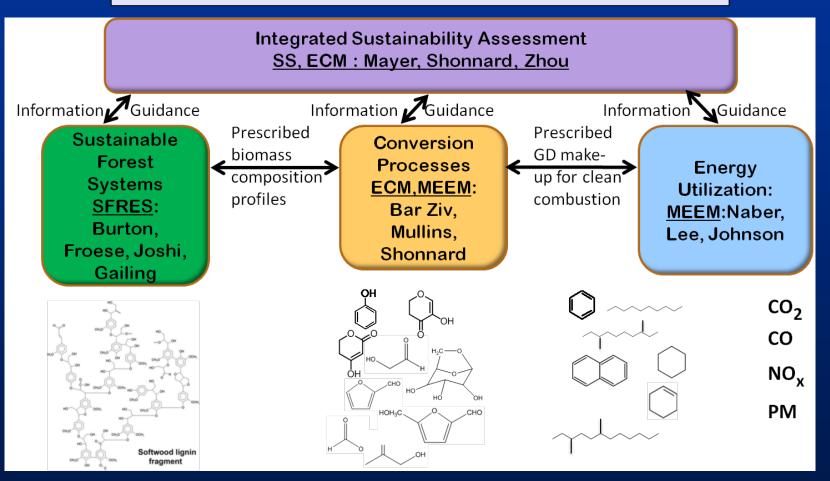
Koers, K.P., Kalnes, T.N., Marker, T., Shonnard, D.R. (2009), Green diesel: A technoeconomic and environmental life cycle comparison to biodiesel and syndiesel, Environmental Progress & Sustainable Energy, 28(1), 111-120



Integrated Biofuels Research Potential Benefits to Society

Current technology: 30% gasoline displacement

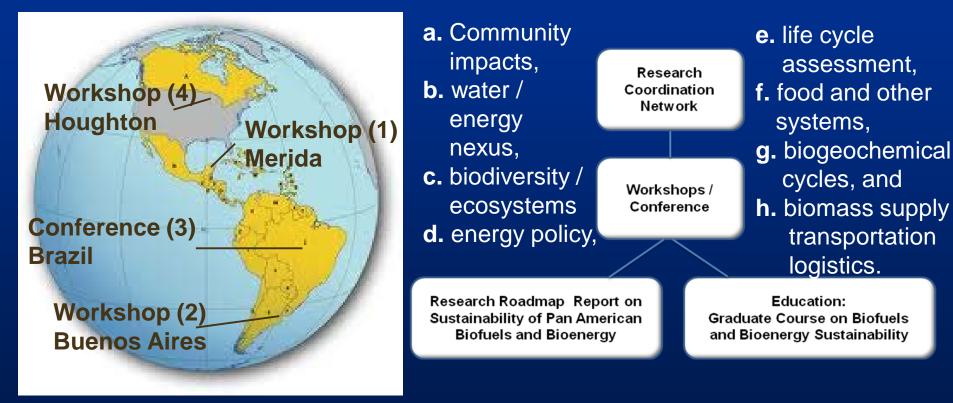
Improved technology: > 60% displacement



NSF Sustainable Energy Pathways

Wood-to-Wheels: Forest-Based Biofuels (Green Diesel)

Research driven by the need to understand and manage molecular identity



Pan American Biofuels and Bioenergy Sustainability Research Coordination Network (RCN)

D. Shonnard, R.P. Donovan, K. Halvorsen, B. Solomon, S. Sweitz, (50 others) *National Science Foundation*: CBET-1140152, 01/01/12 - 12/31/15

Funding Sources

Colcom Foundation

ENERGY

Shonnard Research Group, 2010

Richard and Bonny Robbins Endowment

Thank You!

