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Background

Traditional SISO Control
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Engine system has the following
characteristics:

O Highly nonlinear
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Model-Based Control Framework

Generic form of the model-based control
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Two key components of model-based control:
Qcontrol oriented model capable of real-time simulation, and
model based controller and optimizer
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Control-oriented engine models
developed with GT-Power
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Control-Oriented Modeling

Dynamic System
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Crank-Resolved Engine Model

O Crank-based in-cylinder pressure

and temperature;
O Simple in-cylinder charge mixing
model;
Event-based fuel, ignition, and
torque calculation with mean
manifold dynamics.
Real-time simulation up to
5000RPM
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Physics-based modeling: charge mixing (1)
Background

O HCCI combustion assumes Homogeneous Charge before compression
ignition, while in practice it is Heterogeneous, especially with high EGR.

[ One-zone control-oriented HCCI combustion model, developed earlier,
assumes that the thermodynamic characteristics is uniformly distributed in the
cylinder, leading large prediction error of the start of combustion (SOC).

O To accurately predict the SOC, it is proposed to use a two-zone HCCI
combustion model for predicting SOC, which involves two-zone charge mixing
and HCCI modeling.

140° after exhaust TDC  180° after exhaust TDC  120° before comb TDC 60° before comb TDC 04000

M. Shen, “Simulation of in-cylinder flow and composition distribution of a gasoline HCCI engine with variable valve actuation,” MS Thesis, Tianjin
University, July, 2006.
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Physics-based modeling: charge mixing (2)

Charge mixing modeling - three phases: BV, LV.

O Backflow phase: when in-cylinder pressure
is higher than manifold pressure;

O Backflow returning: when in-cylinder
pressure is lower than manifold pressure;

O Fresh charge phase.
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* S. Zhang, G. Zhu, and Z. Sun, “A control-oriented charge mixing and two-zone HCCI combustion modelE EEERMSE@IMEEE Transactions
on Vehicular Technology (Feb., 2013).
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Physics-based modeling: charge mixing (3)

C1 0 = GT-Power model 0 —GT-Power mode
] = =Two-zone model 35 =="Two-zone mode
g lq === One-zone model — N
o 8 830
= o, \ o
S 6 \ ?
a 520 n
3 5 \ 0
g4 \ /A =
Py " £10
_é 2 o '\.,.“' . 5 / \\ /\\
el g ommid . ‘\-"‘%—--—-// N
07200 250 300 350 400 450 500 -100 0 o 200 300 400 500

Crank position (deg) Crank position (deg)

== GT-Power model 2000
1 400 = =Two-zone model
/7‘\' === One-zone model

T T
—GT-Power modef
=="Two-zone mode

3
(0]
g < )
® 1200 21500 5
g g \ @
2 100 £ g M o
2 ""'M o ) 21000 = 4 8
& 800 3 Nt e
g 5 ©
S 600 £ 500 =
<
400
0
200 250 300Cra r?l?gositféelo(de g4)50 500 -100 0 O koo e 40 500
In-Cylinder Mass Flow Rate (GT-Power and Two-Zone Models)
ELIE 0 i
L 005 | = Tuorsone moset
0.1
Model (MG SOC IMEP Fom ,’ﬂ\ _-{,\\
GT-Power 132 2 4.2 AR AR
Two-zone model 13.2 2 4.22 § o VAR \
One-zone model (w/ flow dynamics) 13.2 4 4.23 " \
One-zone model (w/o flow dynamics) 13.2 8 4.36 gk e M

300 3!
Crank position (deg)

Zhu 07/04/2013 Page 10



Hybrid powertrain — HiL simulations

Mototron based Hybrid powertrain supervisory
Supervisory controller control for the best fuel economy
using real-time equivalent fuel

consumption optimization
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Opal-RT based
real-time simulator

Real-time hybrid powertrain modeling for the
hardware-in-the-loop (HIL) simulation applications
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Optimal Control: Hccl Mode Transition

Valve lift switch
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* X. Yang and G. Zhu, “Sl and HCCI combustion mode transition control of a multi-cylinder HCCI capable Sl engine,” IEEE Transaction on Control
System Technology (Accepted in May, 2012, DOI: 10.1109/TCST.2012.2201719)
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LPV (Gain-Scheduling) Control

|
or field.

Q

Traditionally, the PID control gains are tuned by calibration engineers in test cell

Control design based upon a linear system model whose parameters are a

function of measurable parameters; and the resulting controller parameters are
also a function of these measurable parameters.
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A. White, Z. Ren, G. Zhu, and J. Choi, “Mixed H_ and H, LPV control of an IC engine hydraulic cam phase system,” IEEE Transaction on Control

System Technology, Vol. 21, Issue. 1, 2013, pp. 229-238 (DOI 10.1109/TCST.2011.2177464)..
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Adaptive Control: AFR during LNT regeneration

O Biofuel content is estimated online with guaranteed convergence
O Optimal air-to-fuel ratio (AFR) tracking control as a function of biofuel content
O Guaranteed closed loop system stability under any fuel content
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X. Chen, Y. Wang, |. Haskara, and G. Zhu, “Optimal air-to-fuel ratio tracking control with adaptive biofuel content estimation for the LNT
regeneration,” IEEE Transaction on Control System Technology (Accepted in March, 2013, DOI: 10.1109/TCST.2013.2252350).
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Conclusions

Model-based powertrain/engine control becomes a necessity due to the
significant increment of number of sensors/actuator and high system
nonlinearity.

Control-oriented powertrain and engine modeling is moving towards
first-principle based with reduced complexity (e.g., engine charge-
mixing model)

Powertrain and engine models used for the HIL (hardware-in-the-loop)
simulations will be capable of simulating the physical systems at
different detail level. The improved computing technology enables more
and more first-principle based simulations.

Model-based control, such as adaptive control, model predictive control,
linear parameter varying (gain-scheduling) control, will be the future
powertrain and control technologies
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Other Research Activities

U
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Closed loop combustion control of internal combustion engines (Sl,
HCCI, and Cl)

Adaptive and model reference control of hydraulic and electric valve
actuation

Closed loop system identification and control of automotive systems
Hybrid powertrain system control and optimization

Automotive system modeling for hardware-in-the-loop (HIL) simulations
Combustion control and optimization for ethanol engines

Variable displacement engines

lonization based combustion diagnostics and control

TEG (thermo-electric generator) system management

Application of the smart material to automotive systems

LPV (linear parameter varying) optimal control with hard constraints
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