
ModelModel--Based Powertrain and Engine ControlBased Powertrain and Engine Control
Guoming (George) ZhuGuoming (George) Zhu

Mechanical Engineering, Electrical and Computer EngineeringMechanical Engineering, Electrical and Computer Engineering

Michigan State UniversityMichigan State University

(7(7--44--2013)2013)



07/04/2013 Page 2Zhu

� Background

� Model-based control frame work

� Modeling

� Crank-resolved engine/powertrain model

� Control oriented charge-mixing model

� Control Applications

� Optimal control: HCCI model transition control 

� LPV (Gain-scheduling) control of cam phaser

� Adaptive control of LNT regeneration

� Conclusions

OutlineOutline



07/04/2013 Page 3Zhu
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Engine system has the following 
characteristics:

� Highly nonlinear

� Parameter (time) varying

� System parameters changes 
as engine aging

� Time and event based control

� Complicated flow and thermal 
dynamics

� Robustness (fuel, altitude, etc.) 
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ModelModel--Based Control FrameworkBased Control Framework
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Generic form of the model-based control

Two key components of model-based control:

�control oriented model capable of real-time simulation, and 

�model based controller and optimizer
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ModelModel--Based Control Based Control (development roadmap)(development roadmap)
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ControlControl--Oriented ModelingOriented Modeling
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CrankCrank--Resolved Engine ModelResolved Engine Model

� Crank-based in-cylinder pressure 
and temperature;

� Simple in-cylinder charge mixing 
model;

� Event-based fuel, ignition, and 
torque calculation with mean 
manifold dynamics.

� Real-time simulation up to 
5000RPM
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PhysicsPhysics--based modeling: based modeling: charge mixing (1)charge mixing (1)

BackgroundBackground

140° after exhaust TDC 180° after exhaust TDC 120° before comb TDC 60° before comb TDC 

� HCCI combustion assumes Homogeneous Charge before compression 

ignition, while in practice it is Heterogeneous, especially with high EGR.

� One-zone control-oriented HCCI combustion model, developed earlier, 

assumes that the thermodynamic characteristics is uniformly distributed in the 

cylinder, leading large prediction error of the start of combustion (SOC). 

� To accurately predict the SOC, it is proposed to use a two-zone HCCI 

combustion model for predicting SOC, which involves two-zone charge mixing 

and HCCI modeling.

* M. Shen, “Simulation of in-cylinder flow and composition distribution of a gasoline HCCI engine with variable valve actuation,” MS Thesis, Tianjin 
University, July, 2006.
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Charge mixing modeling - three phases:

� Backflow phase: when in-cylinder pressure 

is higher than manifold pressure;

� Backflow returning: when in-cylinder 

pressure is lower than manifold pressure;

� Fresh charge phase.

Diffusion

• Molecular diffusion

• Laminar diffusion

• Turbulent 

diffusion

Mass transfer between fresh charge 

and residual is assumed to be mainly 

due to
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PhysicsPhysics--based modeling: based modeling: charge mixing (2)charge mixing (2)

* S. Zhang, G. Zhu, and Z. Sun, “A control-oriented charge mixing and two-zone HCCI combustion model," Submitted to IEEE Transactions 
on Vehicular Technology (Feb., 2013).
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Hybrid powertrain Hybrid powertrain –– HIL simulationsHIL simulations

Hybrid powertrain supervisory 

control for the best fuel economy 

using real-time equivalent fuel 

consumption optimization

Real-time hybrid powertrain modeling for the 

hardware-in-the-loop (HIL) simulation applications

CAN

Mototron based 

supervisory controller

Opal-RT based 

real-time simulator
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Optimal Control: Optimal Control: HCCI Mode TransitionHCCI Mode Transition

Two cycle throttle pre-opening 

to prepare for valve lift switch 

from high to low

LQ Optimal throttle control 

to maintain desired AFR

Valve lift switch 

from high to low

Hybrid combustion to match 

increased recompression due 

to electric cam phasing

Hybrid combustion that starts with SI 

and ends with HCCI combustion

DI fuel control to ensure smooth mode transition
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* X. Yang and G. Zhu, “SI and HCCI combustion mode transition control of a multi-cylinder HCCI capable SI engine,” IEEE Transaction on Control 
System Technology (Accepted in May, 2012, DOI: 10.1109/TCST.2012.2201719)
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LPV (GainLPV (Gain--Scheduling) Control Scheduling) Control 

� Traditionally, the PID control gains are tuned by calibration engineers in test cell 

or field.

� Control design based upon a linear system model whose parameters are a 

function of measurable parameters; and the resulting controller parameters are 

also a function of these measurable parameters.

� Closed loop system stability and performance are guaranteed

* A. White, Z. Ren, G. Zhu, and J. Choi, “Mixed H
∞

and H2 LPV control of an IC engine  hydraulic cam phase system,” IEEE Transaction on Control 
System Technology, Vol. 21, Issue. 1, 2013, pp. 229-238 (DOI 10.1109/TCST.2011.2177464)..
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Adaptive Control: Adaptive Control: AFR during LNT regenerationAFR during LNT regeneration

� Biofuel content is estimated online with guaranteed convergence

� Optimal air-to-fuel ratio (AFR) tracking control as a function of biofuel content

� Guaranteed closed loop system stability under any fuel content

• X. Chen, Y. Wang, I. Haskara, and G. Zhu, “Optimal air-to-fuel ratio tracking control with adaptive biofuel content estimation for the LNT 
regeneration,” IEEE Transaction on Control System Technology (Accepted in March, 2013, DOI: 10.1109/TCST.2013.2252350).
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� Model-based powertrain/engine control becomes a necessity due to the 

significant increment of number of sensors/actuator and high system 

nonlinearity.

� Control-oriented powertrain and engine modeling is moving towards 

first-principle based with reduced complexity (e.g., engine charge-

mixing model)

� Powertrain and engine models used for the HIL (hardware-in-the-loop) 

simulations will be capable of simulating the physical systems at 

different detail level. The improved computing technology enables more 

and more first-principle based simulations.

� Model-based control, such as adaptive control, model predictive control, 

linear parameter varying (gain-scheduling) control, will be the future 

powertrain and control technologies 

ConclusionsConclusions
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� Closed loop combustion control of internal combustion engines (SI, 

HCCI, and CI)

� Adaptive and model reference control of hydraulic and electric valve 

actuation

� Closed loop system identification and control of automotive systems 

� Hybrid powertrain system control and optimization

� Automotive system modeling for hardware-in-the-loop (HIL) simulations

� Combustion control and optimization for ethanol engines 

� Variable displacement engines

� Ionization based combustion diagnostics and control

� TEG (thermo-electric generator) system management

� Application of the smart material to automotive systems

� LPV (linear parameter varying) optimal control with hard constraints

Other Research ActivitiesOther Research Activities


